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Introduction

The purpose of these notes is to give a geometrical treatment of
generalised homology and cohomology theories. The central idea is that
of a 'mock bundle’, which is the geometric cocycle of a general cobordism
theory, and the main new result is that any homology theory is a general-
ised bordism theory. Thus every theory has both cycles and cocycles;
the cycles are manifolds, with a pattern of singularities depending on the
theory, and the cocycles are mock bundles with the same 'manifolds’ as
fibres.

The geometric treatment, which we give in detail for the case of
p! bordism and cobordism, has many good features. Mock bundles are
easy to set up and to see as a cohomology theory. Duality theorems are
transparent (the Poincaré duality map is the identity on representatives).
Thom isomorphism and the cohomology transfer are obvious geometrically
while cup product is just 'Whitney sum’' on the bundle level and cap product
is the induced bundle glued up. Transversality is built into the theory -
the geometric interpretations of cup and cap products are extensions of
those familiar in classical homology. Coefficients have a beautiful geo-
metrical interpretation and the universal coefficient sequence is absorbed
into the more general 'killing' exact sequence. Equivariant cohomology
is easy to set up and operations are defined in a general setting. Finally
there is the new concept of a generalised cohomology with a sheaf of co-
efficients (which unfortunately does not have all the nicest properties).

The material is organised as follows. In Chapter I the transition
from functor on cell complexes to homotopy functor on polyhedra is
axiomatised, the mock bundles of Chapter II being the principal example.
In Chapter II, the simplest case of mock bundles, corresponding to pi
cobordism, is treated, but the definitions and proofs all generalise to the
more complicated setting of later chapters. In Chapter III is the geo-

metric treatment of coefficients, where again only the simplest case,



pl bordism, is treated. A geometric proof of functoriality for coefficients
is given in this case. Chapter IV extends the previous work to a general-
ised bordism theory and includes the 'killing' process and a discussion of
functoriality for coefficients in general (similar results to Hilton's treat-
nient being obtained). In Chapter V we extend to the equivariant case and
discuss the Z2 operations on pl! cobordism in detail, linking with work
of tom Dieck and Quillen. Chapter VI discusses sheaves, which work
nicely in the cases when coefficients are functorial (for 'good’ theories
or for 2-torsion free abelian groups) and finally in Chapter VII we prove
that a general theory is geometric. The principal result is that a theory
has cycles unique up to the equivalence generated by 'resolution of
singularities'. The result is proved by extending transversality to the
category of CW complexes, which can now be regarded as geometrical
objects as well as homotopy objects. Any CW spectrum can then be seen
as the Thom spectrum of a suitable bordism theory. The intrinsic geo-
metry of CW complexes, which has strong connections with stratified
sets and the later work of Thom, is touched on only lightly in these notes,
and we intend to develop these ideas further in a paper.

Each chapter is self-contained and carries its own references and
it is not necessary to read them in the given order. The main pattern of

dependence is illustrated below.

VII

The germs of many of the ideas contained in the present notes
come from ideas of Dennis Sullivan, who is himself a tireless cam-
paigner for the geometric approach in homology theory, and we would

like to dedicate this work to him.



NOTE ON INDEXING CONVENTIONS

Throughout this set of notes we will use the opposite of the usual
convention for indexing cohomology groups. This fits with our geometric
description of cocycles as mock bundles - the dimension of the class then
being the same as the fibre dimension of the bundle. It also means that
coboundaries reduce dimension (like boundaries), that both cup and cap
products add dimensions and that, for a generalised theory,
hn(pt. ) = hn(pt. ). However the convention has the disadvantage that
ordinary cohomology appears only in negative dimensions. If the reader
wishes to convert our convention to the usual one he has merely to change

the sign of the index of all cohomology classes.



I-Homotopy functors

The main purpose of this chapter is to axiomatise the passage
from functors defined on p! cell complexes to homotopy functors defined
on polyhedra. Principal examples are simplicial homology and mock
bundles (see Chapter II).

Our main result, 3,2, states that the homotopy category is iso-
morphic to the category of fractions of pl cell complexes defined by
formally inverting expansions. Thus to define a homotopy functor, it is
only necessary to check that its value on an expansion is an isomorphism.
Analogous results for categories of simplicial complexes have been
proved by Siebenmann, [3].

In 84, similar results are proved for A-sets. This gives an
alternative approach to the homotopy theory of A-sets (compare [2)).

In §6 and §7, we axiomatise the construction of homotopy functors
and cohomology theories. Here we are motivated by the coming applica-
tion to mock bundles in Chapter II, where the point of studying cell
complexes, rather than simplicial complexes, becomes plain as the Thom
isomorphism and duality theorems fall out.

The idea of using categories of fractions comes (to us) from [1]
where results, similar to those contained in 84 here, are proved.

Throughout the notes we use basic pl concepts; for definitions

and elementary results see [4, 6 or B8].
1. DEFINITIONS

Ball complexes

Let K be a finite collection of pl{ balls in some Rn, and write
|K| =v{o: 0 eK). Then K is a ball complex if
(1) |K| is the disjoint union of the interiors & of the o € K, and

(2) o € K implies the boundary & is a union of balls of K.



It then follows that

(3) if o, T€K, then on 7 is a union of balls of K.
Notice that we do not assume on 7€ K

A subset L C K is a subcomplex if L is itself a ball complex,
and we write (K, L) for such a pair. If (Ko’ Lo) is another pair, and
Ko CK, L0 C 1L are subcomplexes, then there is the inclusion
(Ko’ Lo) C (K, L). An isomorphism f: (K, L) - K, Ll) isa p!
homeomorphism f : IKI - |K1| such that f[Ll = |L1|, and 0 €K
implies f(0) € Kl. In the case where K and K1 are simplicial com-
plexes, there are simplicial maps f : (K, L) —= (Kl, Ll). The product
K X L. of ball complexes K, L is defined by K X L = {ox-rloeK, Tel ).

The categories Bi and Bs

Now define the category Bi to have for objects pairs (K, L) and
morphisms generated by isomorphisms and inclusions (i. e., a general
morphism is an isomorphism onto a subpair). The category Bs has the
same objects but the generating set for the morphisms is enlarged to

include simplicial maps between pairs of simplicial complexes.
Subdivisions

If L', L are ball complexes with each ball of L' contained in
some ball of L and |L'| = ILI, we say L' subdivides L, and write
L' <l L. The categories Bi and Bs enjoy a technical advantage over
categories of simplicial complexes; namely, if L C K and L'< L,

then there is a complex L' UK = {0:0¢1"' or K- L},
Collapsing

We assume familiarity with the notion of collapsing, as in [6],
for example, Suppose (Ko’ Lo) C (K, L), where L0 =Ln Ko; then we
have a collapse (K, L)\ (Ko, Lo) if KNK  andany elementary col-
lapse in the sequence from a ball in L is across a ball in L (so that
in particular, L\ Lo)' We call the inclusion (Ko’ Lo) C (K, L) an
expansion. The composition of an expansion with an isomorphism is still

called an expansion,



2, SUBDIVISION IN THE CATEGORY OF FRACTIONS

Let B = Bi or Bs, and let X denote the set of expansions. The
category of fractions B[Z—l] is formed by formally inverting expansions.
Thus the objects are the same, New morphisms e_l, e € Z, are intro-
duced, and a morphism in the category of fractions is then an equivalence
class of formal compositions g, ° B, - © gn, where 8; €B or
g = e.l—1 for some e € %. The equivalence relation is generated by the
following operations:

(i) replace h by fo g if h=1fg and f, g € B;

(ii) introduce eoe ' or e loe, e €3;

(iii) replace (ezel)_1 by ell ° e;I,
In fact operation (iii) is a consequence of operations (i) and (ii). Denote
the equivalence class of a formal composition by {go R -SRI PR g, ).

The category of fractions is characterised by a universal map-
ping property; namely, given any functor ¥ : B =+ C such that F(e)
is an isomorphism for each e € Z, then there exists a unique functor F'

so that

commutes, where p is the natural map.

For simplicity, in the rest of the paper we will ignore pairs
(K, L) with L # ¢ when the general case can be obtained by making
minor adjustments, We first observe that any morphism in Bi[Z—l] may

in fact be written {e”' . f} by repeated use of the following lemma,

Lemma 2.1, Let e:J—K be an expansionand f:J—=L a

morphism in Bi. Then there is an expansion e, and morphism f0 so
that
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commutes,

»-a

Proof. Define J0 =K 3L, where J is regarded as a sub-

complex of both by e and f. Then let e0 and f0 be the obvious in-
clusions. That e0 is an expansion follows by echoing the collapse
KN\

Remark, The lemma fails for Bs. For instance, take
K=1X1I,J=1{0}x1, and L = {0}. Then f, must be degenerate on
eJ and hence be degenerate on the 2-cell in K.

Now suppose L'< L; then there are inclusions i:L—=LXIUL'X {1 }
and e: L'= L XIUL'X {1}, Then e is an expansion, and so we have
a morphism {e”' o i} :L—=L' in B[Z '], called subdivision and

denoted > (L, L').

Lemma 2.2, [ is functional; that is,
M > (1, L) = identity,
(i) if L"< L'< L, then

(L', L") . > (L, L) =0 (L, L".

Proof. For part (i), we must show that if io’ i1 K=K X1

are the inclusions, then {i0 } = {i1 }. This is proved by simple col-

lapsing arguments, First, consider K X I subdivided to (K X I)' by

placing K at K x {3 }. There are then inclusions i, i, ix of K in
2

(K X I)' and a reflection r : (K X I)' = (K X I)' about the half-way level,

Now ri, = i1, and {i, )} is anisomorphism since (K X I)' ™\ KX {3 }.

2 2 2
It follows that {r} = identity. Since ri' =i}, we have {i'} = {i'},
y o 1 0 1

The result then follows by considering K X A%, This argument is



essentially due to Siebenmann [3; p. 480].

For part (ii), let A% pea 2-simplex with vertices Vo Vo Y,
and opposite faces At, Ai, A;. Let (L X Az)' =Lxa’ UL x At u
L" X {v,}. Then (L X A%)'XL'X At UL X AT UL" X v, INLxX{v, |

The proof is completed by a diagram chase, See Fig. 1.

L"

o N

IR

Fig. 1

Lemma 2, 3, Suppose given L'< L; then there exists L" < L'
suchthat (LXTDuL"x {1}XLx {0}

Proof. Let Ols vees Op be the balls of L. listed in order of
decreasing dimensions. We subdivide L in n steps. After step r,
the interiors of Oy »--, O, are not touched again, Suppose r-steps

completed, and let o= . Then o has been subdivided to o', say.

Let 7 €0 be acell with thlm T=dimo, and TNG=¢ I nosuch 7
exists, perform a preliminary subdivision of o0. Now assume there is
sucha 7. Then o, = 0 - interior (1) is a collar on ¢ in o, and

Oc Co'. Subdivide oc to 02 so that a collar projection 02 - o" is
simplicial, o" =T U og is the required subdivision of 0. Note the
cylindrical collapse 02 N O",

The resulting complex L" clearly has the desired property since



(6XDUua" X {1}N(o X 1)uo><{0}uog X {1} (XDuox{0},
where the first collapse is elementary, and the second is cylindrical.

Corollary 2,4, Suppose L'< L; then D (L, L) : L= L' is

an isomorphism.

Proof. It follows from 2, 3 that there is L" < L' and L™ < LI,
so that & (L, LL") and D (L', L") are isomorphisms. The result now

follows from 2, 2.
3. ISOMORPHISM WITH THE HOMOTOPY CATEGORY

Now let Bh denote the category with objects pairs of ball com-
plexes, and morphisms homotopy classes of continuous maps. Then there

are natural maps

Bi
N \Bh,
/

Bs
and by the universal mapping property, we have a diagram
Bi[z™ 1]

ﬁl \a‘ (3.1)

Bh.

Theorem 3,2, The maps in diagram (3. 1) are isomorphisms of

categories.

Proof. Since all three categories have the same objects, it
suffices to show that each of @, 8, 7 is an isomorphism on the set of

morphisms from K to L for any K and L. We prove this in three

steps:
A, a is surjective,
B. a is injective,
C. B is surjective.



The result then follows by commutativity. We first observe that a and

y are compatible with subdivision; i.e.,

Remark 3.3. Suppose L'<l L; then a( (L, L") is the homo-
topy class of the identity map. '

Step A. @ is surjective,

Suppose [f]: K= L is a homotopy class; then by the pl approxi-
mation theorem, * there exist subdivisions K' < K, L' < L, and a
simplicial map ' K' = L' so that [f'] = [f]. Let M(f') be the sim-
plicial mapping cylinder of f'. There is then an inclusion i ; K' - M(f"),

and an expansion e : L' = M(f'). It follows from 3. 3 that

[f] = a(b (L, L) "{e"Ni) D (K, K.

Step B, «a is injective,
By 3.1, it is sufficient to show that for any diagram

T
L
0 0
K L
N /e
1 1
J
1
in which the e, are expansions, and such that oz{e;)1 of 1 =ale
1 1 o f }
1

-1
of

o f0 }= oz{e1

means that the diagram homotopy commutes, provided we regard €,

we have {e’'of } = {e7' .f }. Now ale
0 0 1 1 0

and e as homotopy equivalences,
Now let J = J0 UL

relative pl/ approximation theorem (see footnote ), there is a sim-

plicial map f: (K X I)' = J' so that f| |K| x {i} = £, i=0, L. Now

consider the following diagram in which arrows marked e are expansions,

J 1 Then by homotopy commutativity and the

and arrows marked D= are compositions of subdivision followed by

inclusion:

* This is weaker than the usual simplicial approximation theorem. See
[4] or [8] for a short proof,

10



L
P
i' A
1
K i ‘J1-< e L
1 1

Commutativity in Bi[=™'] follows from definitions and 2, 2.
(Note that the left-hand half commutes by 2. 2(i). ) The map g is an iso-
morphism by 2, 2 and 2, 4,

The result follows.

Step C. B is surjective.
It is sufficient to show that the class {f} of a simplicial map
f: K= 1L is inthe image, since any map in Bs is a composition of maps

in Bi and simplicial maps, Consider the commutative diagram

K

R inclusion
i ” t\\ S

X 1
(KX1) '—F) Mf

Ui Ue
1

K — L
f

where Mf is the simplicial mapping cylinder of f, and (K X I)' is

K X I derived at K X {3}, The simplicial map f' is defined using the

obvious vertex map. Then i and e are expansions, and we have

.~ 1 1

) =de oot )=de ot ei b =pletotoi o],

1
since each map in the bracket lies in Bi.

4, A-SETS AND THE CATEGORY OF FRACTIONS

We assume familiarity with the basic definitions involving A-sets
which are found in [2]. An inclusion of A-sets L CK is called an ele-

mentary expansion if K is obtained from L by attaching a set of sim-

11



plexes An(s), for s in some indexing set, to L via A-maps
ts : An, i{s) = L. Aninclusion L C K is an expansion if there is a
countable sequence L « L1 c L2 C L3 ... of elementary expansions so
that K=v Li' In particular, the 'end inclusions' of K in K®1 are
easily seen to be expansions, Let X denote the set* of A-maps which
are expansions, and let 3[2}_1] denote the resulting category of fractions,
The analogue of 2,1 is easily proved for A-sets so that any morphism in
A[E—l] may be written {e 'ef}, Let Ah denote the category of A-sets

and homotopy classes of continuous maps between realisations.

Theorem 4,1, The canonical functor /_A(Z—l) = Ah is an iso-

morphism,

Proof. The proof is analogous to the proof of 3,2, The main
modifications are to replace the cell subdivisions used by simplicial ones,
This can be done by deriving, Also, the A-sets need to be replaced by
simplicial complexes before applying the simplicial approximation
theorem, ' This is done by using (L X I)' with L X {1} derived twice,
and L x {3} derived once. We leave the reader to check details.

Now let K be a Kan A-set, and let [X, K] denote A-homotopy
classes of A-maps X =+ K; let {X, K} denote the set of morphisms
X=K in A(Z'l). From Theorem 4. 1, we have a well-defined function

¥:[X, K]={X, K}. Infact, ¥ can easily be well-defined without the aid

of 4,1, and the proof of the following theorem is then independent of 4. 1.

Theorem 4.2, Suppose X is a A-set and K is a Kan A-get,

Then the canonical function

Y [X, K]= {X, K!

is a bijection.

* P. May has pointed out that there are set theoretic problems here.
We adopt MacLane's axiom of one universe [7; p. 22]. Theorem 4.1

then shows that A[=7'] is a category in the universe.

t The required approximation theorem is given in [2; 5.1].

12



Proof. We first show that y is surjective. An element of
{X, K} has arepresentative e " o f, where f is a A-mapand e is
an expansion. Using the Kan condition on K, we find a A-map r so that
roe=id Define g=rof. Then {g}={rof}={roece lof) =
{e™!lof).

Thus ¥[g] = {e™! o ). To see that Y is injective, suppose
that t[/[go] = t[/[gl]. This means that g, is obtained from g, by a
sequence of the following steps and their inverses:

(i)  replace (fg) by f - g,

(ii) introduce e 'oe or e-e ',

(iii) replace (6261)—1 by eIl ° e;I.

Now it is easy to see that the map g defined above is unique up
to A-homotopy; use the expansion L X {0} UK®TULX {1}=-L®IL
Hence after each step (ii), we can map each A-set in the composition into
K uniquely up to A-homotopy. It follows that g, and g, are the same
up to A-homotopy.

Now let CWh denote the category of CW complexes and homotopy
classes of maps. Then there is the composition

f:A[Z7'] = ah = CWh.

Theorem 4.3, f: A[Z—l] - CWh is an equivalence of categories.

Proof. It is sufficient to show thatif X is a CW complex, then
the natural map [S(X)l —+ X is a homotopy equivalence. ¥rom definitions,

we have an isomorphism g ° a:
a B
7 SX = 7 |sX| = 7.x
n n n

But a is an isomorphism by a relative version of 4. 2, It follows that B

is an isomorphism, and the result follows from J, H. C. Whitehead's

13



theorem {5,

Remark 4.4, There are easily provable relative versions of the

theorems presented in this section.
5. HOMOTOPY FUNCTORS

We rephrase Theorem 3, 2 in terms of functors defined on
B=Bi or Bs. Let T: B—=C be a functor,

Axiom C (Collapse). Let e: (K, L )= (K, L) be an expansion. Then
T(e) is an isomorphism,
From the universal property of the category of fractions and

Theorem 3. 2, we have

Theorem 5.1. Any functor T satisfying C factors uniquely
through Bh; moreover, if T is defined on Bi, then it extends uniquely
to Bs.

Suppose now T is contravariant and satisfies Axiom C. Denote

the canonical extension by T also. Suppose |L| = IK[, then we have

an isomorphism
T[id] : T(L) = T(K).

If L < K, we call this an amalgamation isomorphism and write

am : T(L) = T(K).

From definitions, we see that am = T(l> (K, L)). The inverse isomor-

phism is called a subdivision isomorphism and we write
sd : T(K) = T(L).

Now let Ph be the category of compact polyhedra and homotopy
clagses of continuous maps. Let T : Bi = S, be a functor satisfying
Axiom C, where S, is the category of based sets. We define T:Ph—+S,
as follows.

An element of T(P) is an equivalence class of elements of T(K),

where |K| =P. Suppose lKil =P, i=0, 1. Then u €T(K) is

14



defined to be equivalent to u € T(K1) if there exists u € T(K') for
some K'd Ki, such that am(ui) =u, i =0, 1. Alternatively,
T(P) = lim T(K) where the limit is taken over all K with K| = P.
The canonical function T(K) = T(P) is of course a bijection. If
[f] : P+ Q is a homotopy class, then T[f] is defined by choosing a
representative for [f] in Bs.

Finally, note that for an arbitrary category C, we could define
T : Ph = C by choosing for each P a particular K with IKI = P, and
then defining T(P) = T(K). Any two such choices give naturally equiva-

lent functors.
6. CONSTRUCTION OF FUNCTORS

Suppose given a contravariant functor Z : Bi = S, satisfying the

following axioms.

E (extension). Suppose e : (Ko’ Lo) - (K, L) is an expansion; then

Z(e) : Z(K, L) - Z(Ko’ Lo) is surjective.

G (glue), Suppose K= K UK, L CK, and Liz Ln K., i=1, 2
Suppose u € Z(Ki’ Li)’ i=1, 2, restricts to u eZ(K1 n Kz’ Lo)’ where
L0 =Ln (K1 n Kz)' Then there exists z € Z(K, L) so that z restricts
to w, i=1, 2. Moreover if K1 n K2 C I, then z is unique.

Define T(K, L) = Z(K, L)/~, where z ~2Z if there is a
z € Z(KX 1, L XI) sothat zZ; is identified with the restriction
z| €Z(K % {i}, L x {i} = Z(K, L). It is an easy exercise to show
that ~ is an equivalence relation. To see that z ~ z, consider
ZKx A, LXA)

Now if f: (Kl, Ll) -'(Kz, L2) is a morphism in Bi, then
T(f) : T(Kz’ L2) - T(K17 Ll) is clearly well-defined by

T()[z] = [Z(f)z].

Proposition 6.1, The functor T satisfies Axiom C.

Proof, Let e: (Ko’ Lo) - (K, L) be an expansion. We have to

15



show T(e) is an isomorphism. But by Axiom E we have T(e) is onto.

Suppose then that T(e)z0 = T(e)zl. Construct z € Z(K X I, L, X I) such
that z : z ~2, in two steps. First, find z, € Z(KU(KOXI), Lu (LOXI))
using Axiom G twice; then find z using E.

Compatibility of extension to Bs

Now suppose that Z is in fact defined on Bs. Then we have T

defined using Z |Bi, and T extends uniquely to Bs by Theorem 5.1,

Proposition 6.2, The extension of T to Bs is given by

Proof. By uniqueness, it suffices to show that T(f) is well-
defined on Bs by the above formula, and it is sufficient to consider the
case f simplicial. Let K be any cell complex, and define (K x I)’
by deriving each cell on the half-way level. Then if K is simplicial,
sois (KXTI)'; and if f: K1 - K2 is simplicial, then the deriveds may
be chosen so that L(f X id) : (K1 X1 = (K2 X I)' is simplicial. The

result therefore follows from

Lemma 6. 3. z,~2, if and only if there is z € Z(K X I)' such
that zi=Z|K>< {i}.

Proof. Consider Q = (K X Az)’ obtained by deriving each cell
o KX {vl }. Then Q contains isomorphic copies of (K X I)'; namely,
K X Ai and (K X (A; 1] A;))'. Moreover, it is easy to see that Q col-
lapses to both these subsets. Therefore, givena z € Z(K X I), we get

z € Z(K X Az)'7 and hence El € Z(K X I)' and vice versa,
7. COHOMOLOGY THEORIES

Now let Bi C Bi be the subcategory consisting of pairs (K, L)
with L = ¢, and suppose that Z : BI =S, is a functor. Then we can
extend Z to Bi by defining Z(K, L) = Ker {Z(K) = Z(L))}. Suppose Z
now satisfies axioms E and G. Let T denote the associated homotopy

functor.

16



Lemma 7,1, T satisfies the following axioms for any

KDOK, K
1 2

Half exact: T(K, K U Kz) - T(K, Kl) - T(KZ, K n Kz)
is exact.

Excision: TK. UK ,K)=T(K, K nK))

—_— 1 2 1 2 1 2

is an isomorphism.

Proof. Order 2 is obvious; to see exactness, use E to extend
a concordance on K2 toone on K. For excision, use the definition of
Z(K, L) and G.

Now suppose given functors z9 for q € 7 defined on Bi and

extended to Bi as above, and suppose that in addition we have

Axiom S (suspension). * There are given natural isomorphisms
s9. 79k, L) -»z9 YK x1, KxTUuL x 1.

Then we can define
A1) -~ 191k L)

to be the composition

s 1 TR
L) - W xn Lxh « ™9 w, KvLx {0})

- fro
9k 1)

where W =K UL x {1 }L X1, and i is an excision, j extends the identi-
fication L=+ L X {0}

by an extension of the obvious homotopy on L.

and as a map K=+ W is homotopic to the inclusion

b

Then easy arguments show that the long sequence is exact, and

we have shown

* See the note on indexing cohomology groups at the end of the introduction.

17



Theorem 7, 2. A sequence of functors Zq : Bi = S, q €7,

satisfying E, G, and S defines a cohomology theory on the category

of compact polyhedral pairs,

Remarks 7.3. 1. Tq( ) is in fact an abelian group functor,
This is seen by 'track addition’: Given &, 7 € Zq(K), form
sdt, %9 € Zq_l(K X1, K X 1), and use G to construct
st + 89y € Zq—l(K X 1)'. Finally, use amalgamation and inverse of
suspension to return to Zq(K).

2. Infact, half exactness, excision, and suspension imply co-
homology theory by formal argument, using Puppe sequences. Thus
Axiom S need hold only for T ) )

3. A classifying -spectrum for Tq( ) can be constructed by
taking a A-set G with OX = z%(a%) then it can be seen that
fsqf o Qqu_l |.” We will explain this construction in detail in Chapter
11 §5 for a specific example, This extends the theory to infinite com-

plexes.
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IH-Mock bundles

We describe here the theory of mock bundles, This is a bundle
theory giving rise to a cohomology theory which in the simplest case is
pl cobordism. In this interpretation, all the usual products have simple
definitions, and the Thom isomorphism and duality theorems have short
transparent proofs, Another feature is that mock bundles can be com-
posed yielding a cohomology transfer, The theory also provides a short
proof of the pl transversality theorem [12; 1.2]. In a final section,
classifying A-sets are constructed, The construction is similar to
Quinn's [7; §1].

1. MOCK BUNDLES AS A COHOMOLOGY THEORY

Let K be a ball complex. A g-mock bundle* gq/K with base
K and total space E, consists of a pl projection pg : E‘£ ind |K| such
that, for each o €K, p_gl(o) is a compact p! manifold of dimension
q + dim o, with boundary p-gl(c'r). We denote p-gl(o) by £(0), and call

it the block over o,

The empty set is regarded as a manifold of any dimension; thus
£(0) may be empty for some cells o € K, Therefore, q could be nega-
tive, and then £(0) = ¢ if dim 0< -q. The empty bundle ¢/K has the
empty set for total space, and is a q- mock bundle for all q € Z,

Figure 2 shows a 1-mock bundle over the union of two 1-simplexes.

Mock bundles £, 7/K are isomorphic, written £ = 7, if there
is a pl homeomorphism h : Eg-’ E77 which respects blocks; i.e,,
h(£(0)) = n(o) for each ¢ € K.

Now define the based set Zq(K) to be the set of isomorphism

classes of q-mock bundles over K with base point the empty bundle,

* The terminology 'mock bundle' is due to M. M. Cohen.
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Fig, 2

Zq( ) becomes a contravariant functor on the category Bi of ball com-
plexes and inclusions via the restriction: Suppose given (/K and L C K
then £|L is defined by E(£|L) = pfgl(L), and p(¢|L) =p§| LE(¢|L) = L.
(We use both notations E({) and E
venient, )

Now define a functor Z%( ,) on the category Bi of pairs of ball
complexes (as in L. 7) by defining Zq(K, L) to be the kernel of
Zq(K) - Zq(L). In other words, Zq(K, L) is isomorphism classes of

for total spaces, etc., as con-

£

bundles which are empty over L.

We can now define a functor Tq( ,), as in L 6, by taking Tq(K, L)
to be the set of cobordism classes of mock bundles empty over L, where
50 is cobordant to &1, written £0 ~ £1, if there is a mock bundle
n/K X1, empty over L X I, such that 5 |K x {i} = g for 1=0, 1,

It is easy to see that cobordism is an equivalence relation, and in any

case we now prove:

Theorem 1.1. ZI(,) satisfies axioms E, G, and S of Part I,

and hence, by L. 7. 2, {1 ), Bq } is a cohomology theory* on the cate-

gory of pairs of compact polyhedra,

Proof of 1.1, For Axiom G (glue), suppose given £1/K1, &2 /Kz’
and an isomorphism h : £1 |K1 n K2 = £2 IKI n Kz' Form (/K = K1 UK2

* See the note on indexing cohomology groups at the end of the introductio
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by E(¢) = E(gl) Y E(gz), and define the projection of £ inductively,
using the fact that cells are contractible,

For Axiom S (suspension), suppose given (/K. Now form
st/K X1 by E(sé) = E(£) and Pgy =P x {31); ie, pla'ce ¢ over
K X 1 at the half-way level. Then sf is empty over K X I (and over

L X1 if £ empty over L), so we have a suspension map
s9. 729k, L)~» 29 YK x 1, L x TUK x 1).

The inverse map is defined by composition with the projection
1:KXI—=K; i.e., given /K X1 empty over K x I, define
s'n/K by E(s"'n)=E(n) and p(s”'n)=mno Py It is trivial to check
that s”' is an inverse for s.

Finally, we have to check Axiom E (extension). In other words,
if KX Ko and §0/K0 is given, we have to construct £/K so that
Eo = g[Ko. By induction on the length of the collapse, it suffices to prove
the case when the collapse is elementary across a cell ¢ from a free
face 7. Let J be the subcomplex & - 7. Then [J[ is a ball, and we
can identify (o, |J]) with (|J| X1, |J] x {0}). We then define
E()) =E(5 ) VE(5 | 1) X T identified over E(§ [J3) = E(¢ [3) % {o],
and let p, =p(£)) on E(§) and p(¢ ) X id on E(£0|J) X I. That ¢

is a mock bundle follows from Lemma 1. 2 below.

Lemma 1,2, Suppose |K| is a pl n-manifold, and (/K is a

g-mock bundle, Then Eg

Proof. (Compare [4;p. 142].) Let x € E(£); then x eint £(0),

say. We can then define a 'transverse star' to x in E(£) by inductively

is an (n+q)-manifold with boundary p'gl(alKl).

restricting collars of d£(7) in £(7) for o< 7, Then a neighbouthood

of x in E(£) is homeomorphic to {neighbourhood in £(0)] x
{transverse star }. The same construction holds for p(x) in K, and

the two transverse stars are abstractly isomorphic, hence homeomorphic.
But |K| being a manifold implies that the transverse star is a disc

(P X Q is a manifold at (x, y) if and only if P is one at x and Q one
at y; see [6]). The result follows on observing that x € int (transverse
star) if and only if x € int |K|.
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The Thom isomorphism

We finish the section by observing that the proof of Axiom S given
above generalises at once to give a Thom isomorphism theorem for pi
block bundles (see [11] for definitions).

Let u'/K be a block bundle; then we can give E(u) a ball com-
plex structure in which the blocks of u are balls, for we merely have to

choose a suitable ball complex structure on E(ﬁ). Then we can define
¢ : 29K = 2V (B ), B@)

to be composition with the zero section i: K= E(u); i.e., E(®(8)) = E(&

and p(®(§)=1i-° Py

Proposition 1. 3. ¢ is an isomorphism, and induces an isomor-

phism, called the Thom isomorphism, Tq(K) *Tq'r(E(u), E().

Proof, An inverse for ¢ is given by composition with a pro-

jection for u.

Remark, In the next section, we show that the Thom isomor-

phism is given by cup product with @ Thom class,
2. THE GEOMETRY OF MOCK BUNDLES

We now give geometric interpretations to parts of the cohomology
theory Tq( ,) defined in §1.
Addition

There is an addition in Zq(K, L) given by disjoint union; i.e.,
E(¢+ )= E({) v E(n) and p£+77 = pg U pn. It is then easy to check tha
this coincides with the 'track addition' defined in Tq( ,) (L7.3). To
see the group structure directly, observe that § + £ ~ ¢ by letting
71/K X1 have E(n)=E({£ X 1) and

pn(X, t) =(p£(X), t), t= %s
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Amalgamatjon

Let £q/K' be given where K' << K. Then pg :E(¢) -~ [KI is
a mock bundle over K by Lemma 1, 2, called the amalgamation of £
and written am(£). To see compatibility with amalgamation as in
Chapter I §5, notice that the bundle 17 /K X TU K' X {0] obtained by
extending £/K' X {0] via the proof of 1.1 has total space homeomorphic
with E(£) X I. This is checked by induction over the skeleta, Uniqueness
of collars is used to match product structures,
Subdivision

Now let £{/K and K' << K. Examine the proof of existence of a
subdivision £'/K' such that am(¢') ~ £ (which follows from Chapter I
and 1, 1). The proof says consider K" < K' such that K", as a sub-
division of K, is cylindrical in each ball less a smaller ball (see I. 2. 3).
Then K" X {0} UK XIXKX {1} so that we can extend £/K X {1}
to /K" X {0} UK XT andlet ¢ =am(n|K" X {0]}). But the extension
is defined skeletally, and, on a typical cell, o € K is obtained by first
extending over the cylindrical collapse o" - o N\ 0 and then over the
initial collapse 0 X I X 0" - 0 U gxXTuox {1].

It follows that we can inductively identify E(7n) with E(§) X 1
since E(n [o" -_01) = E(n [0) X 1 can be identified with a collar on £(0),
and 7(oc X I) = £(0) XI (by the proof of 1.1). A simple collaring argu-

ment is again used to match product structures, We have proved:

Theorem 2.1. Suppose given ¢{/K and K'< K. Then there
exists £'/K' such that am(&') = &,

Remark, The reader can check that this proof of existence of
subdivisions is essentially that given in [9; p. 128].
Induced mock bundles

Suppose f: K= L is a simplicial map between simplicial com-

plexes, and £/I. a mock bundle. Then we can form the pull-back diagram

EG" (&) ---» E()

\
\
¥ Py
K——— L
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and it is not hard to show that f#(g) is a mock bundle, and that

t* . 29(L) » z%(K)
is well-defined and functorial (compare [12; 2,3]). This means that
Zq( ,) and, hence by Chapter I, T9( ,) is in fact defined on the larger
category Bs, and it follows from L. 6. 2 that the notion of pull-back is

compatible with the pull-back as homotopy functor,
The external product

Let £2/K and #"/L be mock bundles. Then £X 7/KX L is
defined by E(£{X 1) = E(¢) X E(n) and p(é X n) = pg X pn. The blocks
of £ X n are then products of blocks of £ and 7, We thus get an

external product
4K ® TV (L) » T (K x L).

Remark, Inthe casethat 7 is the identity id : L. = L, we have
{& X 9] = 7m*[£{] where 7:K X L =K is the projection. To see this,
suppose K, L, and 7 : (KX L)' =K are all simplicial, Then n#(g)

is a subdivision of £ X 7,
The internal product

Suppose given /K and nr/K. Define [£] U [7] eTq+r(K) to b
A*[t % 1], where A : K=K X K is the diagonal map; i, e., subdivide
£ X 1 sothat A(K) is a subcomplex, and then restrict to A(K).

The internal or cup product makes T*(K) into a commutative
ring with unit. To see that the class of id : K= K is the unit, use the
remark on external products and the fact that 7 o A = id. Associativity
and commutativity are easily checked. There are natural relative ver-

sions of both products which we leave the reader to formulate,
The composition and the transfer

We now generalise the composition used in §1 to give suspension
and Thom isomorphisms.
Let gq/K be a mock bundle (a block bundle with closed manifold

as fibre is a special case), and let nr/E(ﬁ) be another mock bundle,
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Now if we subdivide 7 so that the blocks of £ are subcomplexes, then
corresponding to o € K, we have by 1. 2 the manifold E(7n f £(0)). In

other words, we have a (q+r)- mock bundle

Py ° P, :E(n) =K

which we call & o 7,

This extends to give a transfer
. mr r+q
p, t TE®) ~ T (K),

where p = pg.
We observe that the transfer is functorial i.e. p,q, = (pa),

where p and q are mock bundle projections

E(f) >E(m) & K

The transfer can be seen to be the composition of the following:
iso. - . i* - + q+ . o
1" (£(8) TRORISG TS (m (), kw) > S mal 'S, kot TR T k)

where E(£) is embedded in K X int(1%*%) with normal bundle v°.
Alternative description of the cup product

Proposition 2. 2. Let £q, 7" /K be mock bundles. Then

(6] v [n] = p,p*[£], where p=p, .
In other words: pull £ back over E(7) and then compose,

Proof. We may suppose that K is simplicial, Subdivide p so
that p : E(7)' = K' is simplicial, and subdivide £ to & /K'. Let
(K X K)' be the subdivision of K X K given by [14; Lemma 1] so that

A(K) is now a subcomplex, Consider the following diagram.
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(p ¢") ¢ E(§) X E(n) > E(&")

X id 7 K"
l P, XP, Pe™! 1
E(n) —= KX E(
l /dxp i E(n)
A *
K —=—» (KXK) > K

2

The squares are pull-backs, and K" is constructed as follows. Choose
a triangulation of K X E(7) so that the blocks of id X p77 are sub-
complexes, Then choose a further subdivision, and choose K" <l K' so
that ™ is now simplicial, Then choose &"/K" subdividing £'/K',
Without loss of generality, we can assume pg, = pg,,. Now pg X p77 is
the projection of a mock bundle {/(K X K)', since by construction

= Wj(n) ° ﬂf(&"). But from definitions p!p*[ﬁ]zA*[C]zA*[ﬁx nl=[£]u[n
The Thom class and the Euler class of a block bundle

Let ur/K be a block bundle with i : K= E(u) the zero section.

If E(u) is given the ball complex structure of §1 (in which blocks are

ballg), then i is the projection of a mock bundle, and thus determines a

class t(u) € T ' (E(u), E(u)), called the Thom class of u.

Proposition 2. 3. U t(u) : THE()) = TV T(E(w), E(u) is the
restriction isomorphism i* : Tq(E (u)) - Tq(K) composed with the Thom

isomorphism.

Proof. The result follows from the alternative definition of the
cup product, and the fact that the Thom isomorphism is composition with

t(u). See diagram.

E(i*({)) ——————— E(%)

i\@f» l

There is also the Euler class of u, e(u) = i*t(u) which can be
thought of as the result of intersecting K with itself in E(u). Both the
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Thom and the Euler classes are natural and multiplicative, We leave

the reader to check these facts.
Properties of the cup product and the transfer

We now give some properties which will be used in Chapter V.

Proposition 2.4, Suppose given a pull back diagram_

EG"y) f  — E®

1 lp
K

L >

with f simplicial. Then f*p =pjf'*.

Proof. Subdivide so that p: E(£)' =K' is simplicial, then sub-
divide sothat f : L' +=K' is simplicial. Now E(f#g) is a linear cell
complex in a natural way and we may subdivide without introducing new
vertices so that p', f' are also simplicial. The result now follows from

definitions.

Remark 2.5, In the case |K| = M is a manifold, f is the
projection of a mock bundle 77/K+, where K < K+, and f, p are em-
beddings, then E(f#g) is the transverse intersection of E(£{) with E(7n)
'in M. The proposition then implies that if g : W = E(£) is a map, then
we can make g transverse to E(f#g) in E(%), or make g transverse
to E(n) in M. The result in either case is the same. We return to

these ideas in 84,

Proposition 2,6, Let p be the projection of a mock bundle 7.
Then p, (p*{ U )= ¢Up,¢L.

Proof. Consider the diagram:

T\———" E(p*f) — E(¥

T

E(f) ——— —<—>K
Pe
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Triangulate E({), E(n), K soblocks are subcomplexes and Pes p are
simplicial. Assume pg = pg, where K'< K is the resulting subdivisio

The result now follows from definitions and 2. 2.
3. CAP PRODUCTS AND DUALITY

Let X be a topological space, and define Tn(X) to be the set of
bordism classes of pairs (M, f). Here M is aclosed pl n-manifold,
f: M—=X acontinuous map, and (M , f ) is bordantto (M , f ) if
there exists f : Wr1+1 -+ X, where W0 is 0a pl manifold with1 bomlmda.ry
the disjoint union W0 u W1’ and there are homeomorphisms 8" Mi"'Wi
such that f o g; = fi’ i=20, 1,

Tn(X) becomes a group by 'disjoint union' and is the nth pl
bordism group of X.

There are relative groups Tn(X, A) defined by considering maps
f: (M, oM) - (X, A) with the notion of bordism enlarged to allow
oW = W0 UW UW, when W, and W1 are disjoint, and f(W2) CA,

There is a homomorphism an : Tn(X, A) -~ Tn_l(A) given by
restriction. The following theorem is well-known, A sketch proof is
included, designed to generalise in Chapters III, IV.

Theorem 3.1 {T (,); A } is a homology theory on the category

of topological pairs.

Proof. Given a map f: (X, A) - (Y, B), we get
f, :Tn(X, A) ->Tn(Y, B) by composition, Naturality of f, and @ are
then obvious., Exactness is proved by easy geometric arguments, Hom-
otopy follows from the fact that M X I is an (n+1)-manifold with boundary
Mx {0} uMX {1} U &M X1, It remains to prove excision. Let

U C A with ¢Z(U) C int(A). Then we will show that
i, : - - A
i, T (X-U, A-U) =T (X, A)

is an isomorphism.

To see surjectivity, consider f : (M, 8M) = (X, A), and define
U, = ~H(u), A = £ '(A). Then we have cl(U)) © inty (A ). We claim
that there is a manifold M1 C M, with M - A1 C M1 M - Ul' Then
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fo LA M X I=W=X defines a bordism between f and f1 where
Wo=M X {o}, W =M X {1]. To construct M, give M a metric,
and let € =d(M - int(Al), cl (Ul)), and triangulate M with mesh

< g/2. Define P = U of closed simplexes which meet M - A1’ and
let M1 = 2nd derived neighbourhood of P (cf. [14]). The required
properties are then easily checked. Injectivity follows by a similar

argument applied to a bordism,
The cap product

Let f: M =K bea map, where M is a closed pl n-manifold,
and let t9/K be a mock bundle, Form f*[£]/M, and choose a repre-
sentative 7, Then by 1,2, E(n) is a closed (n+q)-manifold, and there
is amap g: E(n)- IK[ by composing. Notice that if f is simplicial,
then we can take 7 = f#(g).

We define [f] N [£] = [g], and the reader may check that we have
a well-defined cap product

n: T (k) @ ThE) = T, (KD,

Remarks., 1, There are obvious relative versions of the cap
products.

2, The similarity of the cup and cap products (using the second
description of the cup product) is clear. This will become more trans-

parent later when they are seen to be dual,
Slant products
L T (X) ® TX X ¥) = T4 (y)

] ® [§ =7 (x1)E

29



X1
Y
Consider M X Y ——>» X X Y =Y. Then we have the bundle
) . 4

7
(£ X 1Y)’*£/M X Y, which we can regard as a bundle over Y by com-

posing with 7,

2. TIxX ® T (X X Y) =T, (Y)

qt+s
(6] ® [ =g e(f] 0 {6 X 1)),

In other words, take £ X 1Y as a bundle over X X Y, take its

cap product with f, and then compose into Y,

Remark, As before, there are relative versions which give in
particular slant products when X is replaced by (X, xo), Y by (Y, yo),
and XXY by X~Y=(XXY, XV Y.

Poincaré duality

Let M be a closed n-manifold and {/M a q-mock bundle over
some complex underlying M. Now the fundamental (bordism) class [M]
of M is just the identity map 1: M =M, and since 1* =1, [M]n £ can
be interpreted as the same map Pg: E({) = M, but regarded as a bordism

class by 1. 2. In other words, we have the Poincare duality map

g THM) =T, (M)

+q
defined by Yi{p:E—-M} = {p:E-M]!

Theorem 3,2, Y is an isomorphism,

Proof. ¢ is onto: Let f: W—=M be abordism class., We have
to find a mock bundle which 'amalgamates' to W. We can suppose { is
simplicial, and consider the dual cell complex M* to M. Then
f : W=+ M* is the projection of a mock bundle, This is a consequence
of Cohen's [3; 5.6]. Notice that for a* € M*, we have the block over
a* equal to D(a, f), which is a manifold with boundary corresponding to
the boundary of a*.

¥ is 1:1. Suppose &q, nq/K, |K| = M are mock bundles, and
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that f : W=+ M is a map where W is an (n+q+1)-manifold with boundary
the disjoint union E(£) U E(r). We have to show that £~ 7 in TY(K).
Using collars on the boundaries of W, we can replace f by a map
f,:W-MXI sothat f (M X 0)=¢ and f (M X1)=17. Subdivide
f1 so that it is simplicial, and so that the blocks of £ and % and the
cells of KX 0UK X 1 are all subcomplexes, Now consider the mock
bundle f1 : E(f) = J where J is the cell complex which has for cells
the duals in M X I to simplexes « € M X I and the duals in each cell
ceKX (1u0) of simplexes a €0, That £ is a mock bundle follows
from [3]. Notice that £|(K X 0)' is a subdivision of £, and similarly
for §|(K X 1)'. Now subdivide £ so that cells o X I are subcomplexes
of its base, for ¢ € K, Finally, amalgamate over K X I to realise the

required cobordism.

Remark, The proof of duality shows that there is really no dis-
tinction between bordism and cobordism classes when the base is a mani-
fold; they are represented by precisely the same class of map! The
duality between cap and cup products is also clear from the definitions
using the duality map; i.e., y(£) N =y¢({u n), etc. See the next

section for connections with transversatility.
General duality theorem

Now let YT X C M be compact subpolyhedra, and denote Xc,

€ for their complements, We can regard Xc, Y® also as compact

Y
polyhedra by removing the interior of derived neighbourhoods of X and

Y.

Duality Theorem 3,3, There is a natural isomorphism

¢ TIX, V)~ Tn+q(Yc, x%).

Remarks, 1. ¢ can be regarded as an extension of the cap
product with [M].

2. (3. 3) generalises both Lefshetz duality and Spanier-Whitehead
duality; e.g., for the latter, take X =M =S" (cf. Whitehead [13]).
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3, By Spanier-Whitehead duality, T9(,) is indeed the dual
theory to pl bordism.

Proof of 3.3, Let N(X), N(Y) be derived neighbourhoods of
X and Y, and define ¢ to be the composition

a

T4, v) £ TUNX), N(Y) =T _, (N(X) - N(¥), N(X) - N(Y))
i* n+q
X
¢
Thiq¥» X)

where a is amalgamation; see Fig. 3.

Fig. 3

"To see that ¢ is surjective, regard f: M = Y® as the projection
of a mock bundle (in which the blocks might have extra boundary over x°© )
by Cohen's theorem. Then restrict to X to get a genuine mock bundle,
To see ¢ is injective, combine this proof with the second half of the

proof of 3, 2.
4, APPLICATION TO TRANSVERSALITY

We observe that the mock bundle subdivision theorem (together
with Cohen [3; 5. 6]) implies various transversality theorems. We deal

with the simplest case first, the case of making a map transverse to a
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submanifold. Then we extend to give relative theorems, theorems for
embeddings and for general subpolyhedra. We also give the connection
with block transversality [12],

Let f : W= M be a map between compact pl! manifolds with W
closed, and suppose that NC M is a submanifold. Then we can regard
f : W= M* as the projection of 2 mock bundle ¢, as in §3. Now £ can
be subdivided so that N is a subcomplex of the base (this involves a
homotopy of f); then f_l(N) is the restriction of £ to N, and hence a
manifold by 1, 2, and f is now transverse (in some sense) to N!!

Notice that the proof is easily adapted to give an e-version by
making the diameters of cells of M* < g, Further, N can be replaced
by a whole family of manifolds. 1In fact, the natural setting is where N
is a general subpolyhedron, We now show how to treat relative trans-
verslity in this setting. Let X € M be a subpolyhedron. We say that

f:W—+ M is mock transverse to X if f is the projection of a mock

bundle in which X underlies some subcomplex of the base, We write
Wl X ort | X

For technical reasons, we need a condition on X0 =Xn oM to
get a relative theorem (there are counterexamples otherwise; see 4.2
and 4, 3 below). We say that X, is locally collared in (M, X) provided
that at each point x € X0 there is a neighbourhood in (M, X) which is
the product of a neighbourhood in (oM, Xo) with the unit interval, Local

collaring is equivalent to collaring [8; p. 321].

Relative transversality theorem 4.1. Let M be a compact mani-
fold with boundary and X € M a polyhedron with X0 =X TlaM locally
collared in (M, X). Let f: W =M be a map such that f oM = oW,
and suppose fl awjn Xo; then there is an e-homotopy of f rel oW

making f mock transverse to X.

Proof. Suppose fl oW is the projection of the mock bundle §/K,
and choose a ball complex L with |L| = M extending K, and so that X
is a subcomplex of L. This is done by first extending to a collar via the
product ball complex K X I, and then choosing any suitable ball structure
on M- |K| X [0, 1) and adjoining the two. Following the proof of 3.2,

we can suppose that f is the projection of a mock bundle { such that
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C;' ¢M 1is a subdivision of £ Choose a furlher subdivision £'/I.' of ¢
so that L' < L. Then amalgamating over L, we have gl, say, over L
with £1 |K & £, It only remains to observe that the homotopy of p{
takes place within cells of K, and hence can be shrunk to the identity,

and this extends to give a modified homotopy of f by the HEP.

Remark 4, 2. In fact, the proof of 4.1 used only that K extends
to L with X a subcomplex of L. This needs a much weaker condition
on XO than local collaring, A necessary and sufficient condition is that
the ambient intrinsic dimension [1] of X at X, 1s constant on the in-
teriors of balls of K. This is always true if the ambient intrinsic

dimension of X at x eX0 equals that of X0 at x,

Example 4,3, Let X = 'the lelter T' with the top in @M so that
KnX isa l-cell. Then, if f: dW = @M is not transverse to the mid-
point of K n X, there is no homotopy of f rel dW making f mock trans-

verse to X.
Transversality for embeddings

Now suppose that f : W =+ M 1is a locally flat embedding (the
condition on local-flatness will be removed later). We say that
f: W=M is an embedded mock bundle if f is the projection of a mock
bundle £/K, and for each ball o0 € K, we have fl : ¢(0) » 0 is a proper
locally-flat embedding (i.e., f '(¢) = 8¢(0), and f looks locally like the

inclusion Rli - Rr:_ for some k, n). We then observe that the sub-

division theorem for mock bundles applies to embedded mock bundles to
yield an embedded mock bundle, and that the homotopy which takes place
in the proof can be replaced by an ambient isotopy (by uniqueness of
collars [5]). Thus Theorem 4. 1 applies to give a relative transverality

theorem for embeddings via an e-ambient isotopy (fixed on oM).
Connection with block transversality

Suppose X C M is a compact polyhedron and W is a locally flat
submanifold of M. Recall [12] that X is block transverse to W in M
if there is a normal block bundle v/W in M such that X n E(v) =
E(v|X 0 W). Wewrite X}, W or X} »

34



Theorem 4. 4, XJQ W if and only if W_Ln X.

Thus Theorem 4.1 (the version for embeddings) recovers a
strengthened form of [12; 1. 2].

Proof, Suppose X _b' W; then there is a normal block bundle
v/W so that X N E(v¥) is a union of blocks. Choose a ball complex K
with IKI = M so that the blocks of v are balls of K, and so that X
underlies a subcomplex (i.e., simply triangulate the complement of
E(v) and throw in the blocks of ¥!). Then the inclusion W C |K| is
the projection of an (embedded) mock bundle with X a subcomplex of
the base, Notice that the restriction of this mock bundle to E(v) gives
the Thom class of v.

Conversely, suppose W_LHX by &/K; then we construct a normal
block bundle v on W in M by induction over the skeleta of K so that
it restricts to a normal bundle for £(0) in o for each ¢ € K. This
is an easy consequence of the relative existence theorem for block
bundles [11; 4.3]. Then X } v

Extension to polyhedra

This subsection anticipates §3 of Chapter III (manifolds with sin-
gularities). Observe that it f: Y= M is a map where Y is a polyhedron,
and we apply the process of Cohen's theorem [3; 5. 6] and regard f as

a 'bundle' over M*, then Cohen's proof shows that the blocks, although

not manifolds, are polyhedra with collarable 'boundaries’; 1i.e,, if
0 € M*, then f '(6) is collarable in f 1(0). So we define f:Y =K to

be a polyhedral mock bundle if for each ¢ € K we have f (&) collarable
1

in £ 7(0). Then the subdivision theorem works and we thus get a trans-
versality theorem for two polyhedra in a manifold and similar relative
versions and versions for embeddings. In the case of embeddings, mock
transversality implies transversality in the sense of Armstrong [2].

This is proved by using the collars to construct neighbourhoods of the
form cone X transverse star; compare with the proof of 1.2, McCrory
[15] has shown that mock transversality for polyhedra is symmetric and

equivalent to both block transversality in the sense of Stone [16] and to
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transimpliciality in the sense of Armstrong [2].
The transversality definition of the cup product

Suppose given Eq, nr/K then for some large m we may assume
E(§), E(n) C [KI x 1™ g0 that P, p77 are restrictions of the projection
|K| x 1™ = |K|. Now consider E(£) x I, E(n) x 17 c |k x 1 x I
By inductively making £(0) X I? transverse to 7(0) X Iin in oX I;n Xlin
we get a mock bundle E(¢) X 13n NE(g) X Iin =K. It can easily be seen
that this gives the cup product, using the alternative definition. However
we sketch a proof below connecting the transversality definition with the
restriction to the diagonal definition. This proof has the virtue of
generalising to the more complex situation considered in Chapter V.

Let s denote q-fold suspension. From definitions
sZm(E X )= sm(é) X (K x 1) v g(K x 1) x sm(n) and the total spaces
on the right are transverse without being moved. Let i: IKI X 12m ind
IKI X IKI X 12m be given by i(x, y) = (x, X, y). Then applying i* we
get

_ m m
Som(8UM =8 (X tA7)ue@™) xs (n)
Desuspending both sides reveals the coincidence of definitions,
5. THE CLASSIFYING SPECTRUM

Q-gpectra and A-sets

We give a simple-minded definition of spectra in the category of
A-sets. Basic facts about A-sets contained in [10] will be assumed.,
Given a based Kan A-set X, we define a based Kan A-get ©X as follows.

(n) (n+1)

@x)" c x and o € (@x)™

R s +1
if and only if Bn+10 = *n and a’o‘ o= *0. The operators

n, are just restrictions of the

vy

8 @x)® = (@x)@-1) j=o, 1, .
ai in X,
Let QY denote the space of loops on the based CW complex Y,

and let SY denote the singular complex of Y, There is an identification
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n+1

A" x /A" x {0} = A given by

(t y eevy ta S) ind ((1-S)t, L] (1's)tna S).

0 n 0

This deter mines a natural isomorphism 6(Y) : 2SY - SRY, There are

also based homotopy equivalences

¢(Y): |SY| »Y and (X)) :X—s|X]
(see [10; p. 334]). Consider the composition

o@lx|) e lo]x|| o lovx)| : |ax| - |as|x||~|sa|x||-alx].
We have now proved:

Lemma 5,1, Suppose X is a Kan based A-set. There is a based

(weak) homotopy equivalence

lex| - a|x].

Now define an Q-spectrum as follows. For each m € Z is given
a Kan A-get Qm and a homotopy equivalence

e :§

m m-.ﬂgm—l'

It follows from 5, 1 and [13] that a cohomology theory h* is defined on
the category of pairs of CW complexes and homotopy classes of maps by

n™(, B) =[4, B), (I8_I, [*]).

The Q-spectra for pl cobordism

Define §(PL)  as follows. Let R™=UR". Then a k-simplex
of Q(PL)m is a compact polyhedron X C Ak:{( R” such that nl (X~ Ak
is the projection of an m-mock bundle over A, where 7 is the natural
projection.

Base simplexes *k € S(PL)m are defined by taking X = ¢, and
face operators are defined by restriction. It follows from the proof of

1. 1 and general position that Q(PL)m is a Kan complex (compare [11;
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2.3]). Define ek : aK o Ak Tl by ek(s) = }s + %Vk+1' Then we have

ek g(pL)(k)-»(szg(PL)m )®) gefined by

-1
K.
XCa X Rw—f’——f—lgmskﬂ xR,

e S(PL)m - QS(PL)m_1 is then a based A-map,

Proposition 5. 2. e S(PL)m - »QQ(PL)m_1 is a homotopy

equivalence.

Proof, e is injective so we have to describe a deformation
retraction of 0§ (PL)m_1 on em(S(PL)m). This can be thought of as
'sliding to the half-way level'. More precisely, suppose given a map
An, i =5 (PL)m—l
the simplexes together to form a mock bundle E/CArl ; embedded in

whose boundary goes into em(S(PL)m). Then glue

CA i xR” and empty over cone-point and base, wh’ere CAn,i denotes
a cone on An,i with cone-point last. Then E(£) lies over the half-way
level in CaAn’ " and we homotope E(£) rel boundary into the pre-image
of the half-way level over CArl i Then, using an identification of

ca" with CArl ; X1 and gener:al position, we get an n-simplex of

Qg (PL)m whos’e restriction to the ith face lies in em(S(PL) The
deformation then follows from [10; 6. 3].

m)'

Now let K be an ordered simplicial complex, and f : K-’S(PL)H
a A-map. Then we can form an m-mock bundle £/K by gluing together
the images of simplexes of K, and since the base complex gives the

empty bundle, we get a function

& :[K, L; §(PL ~ T (K, L),

where [ ]A denote A-homotopy classes. Then by general position (com-
pare [11; § 2]), @ is a bijection, and it follows from [10] that & induces

a natural bijection
[P, @; lseL) |, *1=T"P, @

for polyhedral pairs.
Finally, we notice that the suspension isomorphism essentially

coincides with the function e . More precisely, e_ o f:K=>Q(G(PL)
m m m-1
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gives a mock bundle 7 /CK such that s£{/K X1 is isomorphic to the
amalgamation of the pull-back 17#77 by the pinching map 7:(KXI)' =K,
where (KX 1)'<d K X1 and 7 is simplicial,

We have proved:

Theorem 5. 3. The cohomology theory {Tq, aql coincides for
polyhedral pairs with the cohomology theory defined by {S(PL)m, e i
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Il -Coefficients

In this chapter we give a geometric treatment of coefficients in
oriented pl bordigsm theory. The definition (although not all the
theorems) extend to other geometric homology theories and this extension
will be covered in Chapter 1V, as will the extension to cobordism (mock
bundle) theories. Application to general homology theories and con-
nection with other definitions of coefficients will be covered in Chapter
VIL

There are two good definitions of coefficients:

1. For a short resolution p of an abelian group G we define
coefficients in p by labelling with generators and introducing one stratum

of singularities of codimension 1 corresponding to the relations (see §1).

2. We allow labelling by any group elements, and singularities
corresponding to any relation and then, in the bordisms, allow singulari-
ties of codimension 2 corresponding to 'relations between relations’

(see §3),

Definition 1 is very simple geometrically while definition 2 is
functorial in G. To prove equivalence of the two definitions involves a
further definition, for longer resolutions (in §2). The basic geometrical
trick is resolution of singularities and appears in the proof of the universal
coefficient sequence in §2. The universal coefficient sequence itself can
be seen as the measure of the obstruction to resolution of the final singu-
larity, In §3 it is seen that the universal coefficient sequence is natural
for G; consequently by [3] it splits for a large class of abelian groups,
including all groups of finite type.

In 84 we show how to regard the product of a (G, i)-manifold with
a (G', i')-manifold as a (G®G', i+i')-manifold and thus define a cross

product for bordism with coefficients.
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In 85 is the Bockstein sequence and in §6 we observe that, if

G is an R-module, then & (-, -; G) inherits an Q, (pt. ; R)-module
structure in a natural way, Using Dold [1] we then have a spectral
sequence Torp(ﬂq(—, -;R), @ = .-, -; G).

We use the convention --—>-+ for inducing orientations on the
boundary of 1-manifolds, and in general use the 'inward normal last’

convention,
1. COEFFICIENTS IN A SHORT RESOLUTION

Let F be a free abelian group with basis B. We define co-
efficients in F by labelling with elements of B, i.e, define an F-
manifold to be an (oriented pl) manifold each component of which is
labelled by an element of B. We write (M, b) or M®b for M labelled
by b. It is easy to see that bordism of F-manifolds defines a bordism
theory ©,(,;F) and that @ (X, A;F)=Q, (X, A)®F for the pair (X, A).

Now let G be a general abelian group and p a short resolution

of G. p comprises a short exact sequence
¢ €
0 -~ F1 - F0 - G—=-0

where F0 and F1 are free abelian groups with bases B0 and B1'
The elements of B0 are the generators of G and those of B1 are the
relations for G with respect to the resolution p. We will define co-
efficients in p by starting with Q_( ,; Fo) and 'killing' the elements of
Qo(pt. ; Fo) which correspond to the relations:-

let r € B1 then ¢1(r) € F0 and can be written uniquely in the
form Eozib.1 where ai is an integer and the sum is taken over elements
bi eBO. The element L(r, p) € Qo(pt.; Fo) is the union of lail points
labelled by bi and oriented + if @, > 0 and - if a, < 0, where the
union is taken over all elements bi € Bo'

A p-manifold of dimension n is a polyhedron P with two strata
P D S(P), labellings and extra structure such that

1. P - S(P) is an Fo—manifold of dimension n.

2. S(P) is an Fl—manifold of dimension (n - 1).
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3, For each component (Q, r) of S(P) there is given a regular

neighbourhood N of Q in P and an isomorphism
h: N=Q x C(L(r, p))

where C(X) denotes the cone on X and h carries Q by the identity
to Q X (cone point).

4, h is an isomorphism of Fo—manifolds off Q.

Intuitively, a p-manifold is a manifold labelled by generators for
G with codimension 1 singularity labelled by relations. Moreover the
sheets and orientations of P near S(P) give the relation labelling the

singularity.

Examples 1.1. 1. G =F a free abelian group and F1 = 0,
F0 = F, B0 = B, Then a p-manifold is precisely an F-manifold,
2. G= Zrl and we use the usual presentation

Xn
0—=Z — Z->Zn->0.

Then B = {1}, B = {1} and so the labels give no information
and can be suppressed. L(1l, p) is the union of n points (all oriented +).
Thus a p-manifold is a manifold with a codimension 1 singularity, which
has a trivial neighbourhood of the form C(n points). Moreover the
orientations of the n sheets all induce the same orientation on the singu-
latiry. This is precisely Sullivan's description of 'Zn—manifold' [4].

See Fig, 4,

Fig. 4. Part of the neighbourhood of the singularity in a 'Z -
manifold’ ?
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3, G=2Z We describe the resolution by specifying the

oo
generators and relations. The generators are 'l /p', '1/p2', ... and
the relations, as elements of Fo' are (p('l/pi').- '1/pi'1'), i=1, 2...
and p('l/p'). Thus the sheets are labelled '1/p1' and the singularities
occur where p sheets labelled '1/pi' merge into one sheet labelled
101" or where p sheets labelled '1/p' merge together, Orienta-
tion has the obvious compatibility, See Fig, 5, in which p = 5:

Fig. 5

4, G =Q, the rationals, Generators 'l/m', n=1, 2, ... and
relations p('1/m') - '1/9', where n=pq and p is the smallest prime

occurring in n, The picture is similar to the last one.

5. In all the cases above we have chosen the most natural resolu-
tion for G, Other resolutions also give rise to a notion of 'G-manifold’.
In the example below, a, b, ¢, d are the generators of the copies of Z
indicated:

Z@Z—»Z@Z—>Z3
b 1
ar——— 2

¢ ——» a-2b

d b—————— atb

Here a p-manifold has two sorts of sheet: a-sheet and b-sheet,

Two b-sheets can merge into an a-sheet and an a and b sheet can
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merge together. This notion gives the same bordism theory as the
notion of 'Za—manifold' in Example 2, as we will show in §3.

There is a natural notion of p- manifold with boundary and we thus
have a bordism theory Q*( ,; P). That this theory is a generalised
homology theory follows from the proof given in 11 3.1 for T (,)

(The crucial fact is that the regular neighbourhood of a polyhedron in a
p-manifold can be given an essentially unique structure as a p-manifold, )
We now turn to the universal coefficient theorem for p-bordism. In §2
we will prove the theorem in the general case (for longer resolutions)
and here we will content ourselves with the statement and a sketch

proof of this (simpler) case, with stress on the geometry of the situation.

Theorem 1.2, Let p be a short resolution, There is a short

exact sequence, natural in (X, A):

l s
0=- Qn(X, AR G- Qn(X, A;p)—> Tor(ﬂn_ X, A), G)— 0.

1{
Sketch of proof. (For full proof see 2. 5.) The spaces (X, A)
play no role in the proof of the theorem and we will ignore them,
The notation is intended to suggest that ¢ is the 'labelling' map

and s is 'restriction to the singularity’'.
Description of 1

Using the description of Qn ® F0 as manifolds labelled by ele-
ments of B0 (see start of this section) we have a 'labelling' map
l1 : Qn ® F0 - Qn(p). Now l1 is zero on relations. This is seen as
follows. Let r be a relation and [M] € . Consider the labelled
manifold M X L(r, p) X1 with each copy of M X {0} identified to-
gether and this end labelled by r, This constructs a p-bordism of
ll([M], r) tozero, See Fig, 6, It follows that l1 defines a mono-

morphism I : Qn ®G-— Qn(p).
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M X L(r, p)

Fig. 6

Description of s

Let P be a p-manifold with singularity S(P). S(P) is an Fl—
manifold, moreover the map
8¢,

Qn—l ® F1 - 'Qn—l ® FO’

can be described on generators as product with L(r, p). Hence the image
of S(P) in 'Qn—l

neighbourhood of S(P) in P. This is bordant to zero in Qn—

® F0 is represented by 0U, where U is a regular
1 ® FO
since it bounds cZ (P - U). Thus the 'singularity' defines a map

s Qn(p) - Tor (2

argument,

n-1’ G) and it is surjective by reversing the above

Exactness at nn(p)

Order 2 is trivial (an Fo-manifold has no singularity). To see
exactness, suppose M is a p-manifold with S(M) bordant to zero as an

Fl—manifold by a bordism W, Construct the bordism
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W =MxTUW_XC(Lr, p)

where Wr is a typical component of W (labelled by r) and the union
identifies the obvious subset of M X {1] with EiWr x C(L(r, p)), W

1
is a p-bordism of M to an Fo-manifold. See Fig. 7.

M X1

Fig. 7

2. COEFFICIENTS IN A LONGER RESOLUTION

In this section we will generalise the construction of §1 to give
coefficients in resolutions of length = 4.

Let G be an abelian group. A structured resolution p of G
consists of

(a) a free resolution of G of length =< 4

¢ ¢ ¢ €

3 2 1
0-F - F ==F =+ F =-»>G=0
3 2 1 0
b)  abasis, BY, for each F, 0=0,1,2 3
c) for each bP € BP (p =1, 2, 3) we are given an unordered word,

w(bp), representing the element ¢p(bp). Precisely w(bp) is a finite set
(of pairs)
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{Bib?nlli varies over a finite set I(bp), 6i=+ or - bp 1 ¢ gP- 1

such that }, % bp 1o ¢ (bP), where the sum denotes the element of F

p-1
obtained fr om w(bp) by adding up all the coefficients belonging to the
same element in BP” 1.

(d) For each bP ¢ BP (p =2, 3) we are given a 'cancellation rule’

defined as follows. Let w(b’) = {6 bp 1 i eI(bp) }. Then order two
of p implies that the formal sum E 0, w(bp ) is an unordered word
representing the zero element of Fp_2 in terms of the elements of
Bp-Z. The effect of 6, is an inversion of sign iff 6, ='-'.

The given cancellation rule consists of a procedure for pairing off
the letters of 2 5, W in) 1) in F_ .
the letters of Z 6 AL bp Ly into galrs of the form 6 BP- 2, o, bP"2) with
6j # 6k'

For the sake of simplicity we may write the set I(bp) in the form
{1, ..., 1 :1=10P)).

If 0=k=3 then Py is the structured resolution of Im ¢k

¢3 ¢k
pk;O->F3 - .. Fk - Im¢k-’0

Precisely c(bp) is a partition of

where the structure is that induced from p. Clearly po = p,

For each quadruple (G, p, p, n), where G is an abelian group,
p is a structured resolution of G; p, n are integers such that
-1=p=2; n=0, we shall construct

(a) aclass of pl isomorphism types of polyhedra with extra
structure, called the class of (p, p, n)-manifolds,.

(b) aclass £P of (p, p-1, p)-manifolds for p = 0, called the
class of (p, p)-links.

We start by defining a (p, -1, n)-manifold to be an Fo—manifold
and in general (p, p, n)-manifolds will be defined from (p, p-1, n)-
manifolds by 'killing' the class £P. The precise definition (an extension
of that in §1) is given at the end of the construction of the classes £p.

The (p, 2, n)-manifolds will be called simply (p, n)-manifolds.
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Construction of £P

For diagrams we refer to the examples given later. To construct

l

£ let b' eB', wp')= 3 6lbl Give the set {b, ..., b; ] the dis-
i=1

crete topology and each point b (i=1, ..., 1) the orientation 6i' The

resulting polyhedron will be called the 0-link associated to b in p

(or generated by b' in p) and will be written L(b , P). We define
the class £° to consist of all polyhedra L(bl, p) with b' € Bl, i.e.

0= {L(bl, p) : b €B'). Now consider the join of L(bl, p) and the
point b', written b'L(b’, p), and give b'L(b', p) - b’ (= the open
cylinder over L(bl, p)) the orientation - ——+ (arrow departing from
'-' gign). The join b'L(b", p), with the above orientation off b' and
with the orientation '+' on bl, will be referred to as the (oriented) cone
over L(bl, p) with vertex bl. In general it happens that different
elements of B! may give rise to the same 0-link, Therefore, over the
same link, there may be different cones, corresponding to different
vertices generating the link, L2

To construct £1, let b° eBz; w(bz) = (Zb )Gibil. Construct

the 0-link L(b° : pl) as in the previous case. E;clh bil generates a

0-link L(bil,

l
p)(i=1, ..., l); consider the space U bi[bilL(bil, p)=L
i=
where b.lL(b.1 p) is the cone as defined above and 6 changes all the
orientations present in this cone iff 6 ='-' Let w= 26 w( l)

{bf, .. b with the appropriate s1gns] Then L = u 6 L(bil, p) is
i=1
obtained by giving w the discrete topology and orientations according

to the signs. Therefore the cancellation rule c(bz) gives a canonical
way of joining the points of L in pairs by plugging in oriented 1-disks.
Precisely suppose GJbJ is paired with Gkbk Then GJ + 6 and we
insert a 1-disk b bk with orientation given according to the rule
'arrow departing from '+' sign'. Moreover we label the 1-disk by the
unique element bJP = bli € BD. The object which is obtained from L
through the above identifications in T is called the 1-link associated to
b’ in p (or generated by b° in p) and it is written L(bz, p). The
class of 1-links, £1, is defined by &£' = {L(bz, p):b° € B’ J.
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1t is clear that it is the given cancellation rule in p that makes
the construction well defined. Different rules may give rise to com-
pletely different links.

We think of L(bz, p) as a one-dimensional stratified set in which
the intrinsic j-stratum (j = 0, 1) consists of a disjoint union of j-disks,
each disk is oriented and labelled by one element of Bl_j-, the 0-stratum
is the 0-link generated by b° in P

It is clear how to define the cone b2L(b2, p): topologically
b2L(b2, p) is the usual cone over L(bz, p) with vertex b2, the subcone
over the 0-stratum of L(bz, p) is given an orientation outside b’ as
in the previous step; the subcone over the 1-stratum has the orientation
given by the cartesian product:

(1-stratum) X[-; +) where [-; +) is the half open 1-disk oriented
'from - to +'. Finally the vertex b’ has the orientation +. Each
stratum of b°L(b°, p) is labelled in the obvious way. Now, as before,
it may well happen that different elements in B’ generate the same
1-link and therefore over the same link there may be different cones.

Now suppose W is an oriented manifold, then we can form the
topological product W X b2L(b2, p). From now on we think of the above
product as having the following additional structure: three intrinsic strata,
namely W X b2, W X Lo’ W X L1’ L]. being the intrinsic j-dimensional
stratum of L(bz, p) (j =0, 1); a labelling on each stratum obtained from
the labelling of the second factor; the product orientation on each stratum.

We are now left with the case p= 2. Let b> € BB. Consider
the 1-link associated to b> in p1 and construct a trivial normal bundle
system with base L(b3, pl) as follows. If 6ib12 is a vertex of
L(b’, p,) then put biL(b:, p) as the fibre at that vertex. The part of
L(b3, pl) which remains unclothed consists of a disjoint union of closed
1-disks, Let D, labelled by b e Bl, be one of such disks. The re-
striction of the normal bundle to éD is @D X L(bl, p); therefore we can
extend the bundle by plugging in D X L(bl, p). As aresult of clothing
the 1-stratum of L(b3, ‘01) we are left with a polyhedron, whose boun-
dary consists of 1-spheres, labelled by elements of B®. Then plug in an
oriented labelled 2-disk for each sphere and get the required link L(b3, p).

The cone b3L(b3, p) and the product W X bBL(bB, p), where
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W is an oriented manifold, - are defined as in the previous cases.

We now define (p, p, n)- manifolds (without boundary) inductively
on p as follows. A (p, p, n)-manifold is a polyhedral pair M D S(M)
with labellings and extra structure such that

(a) M- 8S(M) is a (p, p-1, n)- manifold

(b) S(M) is an Fp+1-manifold

(c) (Trivialised stratification condition) For each component V
of S(M) labelled by bp+1 € Bp+1, there is given a regular neighbourhood

N of V in M and an isomorphism
+ +
h: (N, V)= (v < PPt ), vox pPYY)
(d) h is an isomorphism of (p, p-1, n)-manifolds off V.

Remarks 2.1, 1. It is obvious how to give a p-link the required
extra structure to make it into a (p, p-1, p)-manifold (and this completes
all the definitions),

2. In all the above definitions we have only used the fact that
the resolution p has order two,

3. The definition extends to yield (p, n)-manifolds with boun-

dary in the obvious way.

Examples 2.2. 1. A short resolution gives rise to an obvious
structured resolution (the cancellation rule gives no information in this
tase). Then the notions of p-manifold defined in §1 and §2 coincide.

¢, 9, ¢,
2. p:O-’Ker\bz-’FKer\bl*FKere-'FZB*ZB-'O

Let b’ € Ker ¢2 be such that

wb’) =-b% +b° +1b°
1 2 3
w(bz) =-b' +b' e€FKere
1 11 12
wb?) =b' -b' +b' €FKere
2 21 22 23
wh’) =-b' +b' +bl! €F Ker e
3 31 32 33
1 0 0
=p° +
W( 11) bl b2
wib: ) =-b’ - b’
12 1 2
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Figure 8 shows the construction of L(ba, p), the cancellation rules

being suggested by the diagram itself.

¢ ¢

2 1
3. p:O-’Ker\bz-’FKer\bl-’FKere -'FZS-'ZS-’O.

Let b2 be a basis element of F Ker ¢1. Suppose

1

wb?) =b  +b +b' +b
1 2 3 4

wbl) =b° +1b° +1p°
1 11 12 13
wbl) =-p° +b° +1b°
2 21 22 23
wbl) =-b° -b° +b°
3 31 32 33
1, _ .0 0 0
W(b4) - b41 b42 b43
0y _ .00\ _ 0y _ _p0
e(bu) e(b“) 2; e(blz)_e(b“)—B,
0 0 0 0y _ .
E(bU) (b21) (b”)— (b“) 0;
0 0 0y _ 20y
b’ ) =ebl)=1; ep’)=cb’)=4

Fig. 9

Figure 9 shows two possible links associated to b’ in p corres-
ponding to different cancellation rules. This completes the examples,

Now let M be a (p, n)-manifold and M' a (p, n')-manifold. An
¢embedding f : M' = M is a locally flat stratified embedding between the

53



underlying polyhedra, which is compatible with the labelling and the
trivialisations, If n'=n, then f may be orientation preserving or
orientation-reversing. In the following, unless otherwise stated, a co-
dimension zero embedding will always be assumed to be orientation pre-
serving. A submanifold of a (p, n)-manifold M is a subset M0 M
together with an embedding f : M' “* M (of p- manifolds) such that

(M) =M0. If M isa (p, n)-manifold, -M denotes the (p, n)-manifold
obtained from M by reversing all the orientations; (p, n)-manifolds

have the following properties.

Proposition 2,3, 1. If M is a (p, n)-manifold, M X T has a
natural structure of (p, n+1)-manifold, obtained by crossing the structure
of M with I, it is clear that M X I) M U - MU &M X L.

2. If M, M' are (p, n)- manifolds and Mo’ M;) are (p, n-1)-

submanifolds of @M, oM' respectively such that M0 é -M;), then

M Ug M' is a (p, n)-manifold with boundary isomorphic to
L U 1 ]
C (aM\M0 g oM \MO).
3, Let M be a (p, n)-manifoldand X< M. Let N be a

regular neighbourhood of X 1_rl M. Then N can be given the structure

of a (p, n)-manifold in an essentially unique way.

The proof of 2, 3 is left to the reader. There is an obvious notion
of a singular (p, n)-manifold in a space and thus we have the bordism
group Qn(X, A; p). The following proposition follows directly from
proposition 2, 3, using the proof of I 3. 1,

Proposition 2, 4, {Qn( ,; p)1 is a generalised homology theory

on the category of topological spaces,

The universal coefficient sequence

Proposition 2, 5, For each integer n = 0 and each pair (X, A)

there exists a short exact sequence

4 s
0= H (b, @ (X;A)=>Q (X; A;p) > H (0, @ (X, &)= 0

1

which is natural in (X, A).
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Proof, First of all we anticipate that the proof consists of
seometrical arguments involving only (p, n)-manifolds and their strati-
fications, In the constructions, the maps into (X, A) do not play an
sssential role and so, for the sake of simplicity, we shall assume
X, A) = (point, #).

Description of the map s

It involves a resolution of singularities, Let M be a closed
(b, n)-manifold. We are going to show that there exists a (p, n)-manifold
l\7L bordant to M and having no singularities in codim > 1. Let SM be
the last stratum of M. Then, by definition of (p, n)-manifold, SM is

an Fp-manifold, where SM has codimension p, We need the following:

Lemma 2,6, Suppose that [SM] = [S] a_tin-manifolds. Then

M is bordant to a (p, n)-manifold Q, whose last stratum is S, by a

bordism R whose last stratum is still in codimension p.

Proof. Consider the following spaces:

M X I', where I' = [0, ~1];

SR = any bordism between -SM and -S:

assume that SR consists of a set of equally labelled
components, with label, say, b € Bp;

v(-SM) = normal bundle of -SM in -M=M X {-1};
SR x L(b°, p).

Ve have: v(-SM) C M x {-1}; v(-8M) C SR X L(bp, p). So we can form

the identification space:

R = SR X L(b°, p) u(\-s_(T/[)) M X T’

vhich provides the required bordism,
If SR has many labelling elements, we perform the above con-
struction simultaneously on every set of equally labelled components.

The last stratum of R is SR and has codimension p. See Fig. 10.
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e M X T
w0 o I
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N = e =
= =Y |
= - =
= SR -8 = —| The whole manifold
_ - - is R
= \__; 2 =
= Eéf \\\\\: ;
;///IIHHH{ llll)](IIJH)U\\
SM

Fig. 10

Remark 2. 7. If we can choose S = ¢ then the above constructiof
gives a resolution of the low dimensional singularities of M, In other
words, when the low dimensional singularities of a (p, n)-manifold M
bound (in a labelled sense), they can be resolved by means of a bordism

having the same kind of singularities as M. (Cf, proof of exactness in
1, 2.)

Proof of Proposition 2.5 (continued). Now let us look at the
image of [SM] through the morphism
- id ® ¢y,

:Q ®F - o ®F ..
¢p n-p - p n-p " p-1

We have, for each component V, ® bp C SM, {5 (v, ]® b)) =[V,]® w( bp)
v,]® Z 6 bp los, [6 v,]® bp‘ 1. thlS is nothmg else than the bordlsm
class of the boundary of the complement of a regular neighbourhood of ¥,
in the (n-p+1)-stratum of M. Therefore the image of [SM] is the bor-

dism class of the boundary of the complement of a regular neighbourhood
SM in the (n-p+1)-stratum of M and, as such, is the zero element of

Qn-p® Fp-l' Now, because p > 1, the sequence:
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is exact and so there exists an element [SW] € Qn-p ® Fp+1 such that

SW] = [SM]. Suppose first that SW is a set of components all

il
pt+1
p+1 € Bp+1.

labelled by b
SM = SW ® w(bp+1), because if SM is only bordant to SW ® w(bp+1):
SM ~ SW & w(bp+ 1), then, by Lemma 2. 6, M can be replaced by another
(¢, n)-manifold M such that:

(a) ™ is bordant to M by means of a bordism with singularities

We can always reduce to the case

up to codimension p only
(b) SM = SW ® w(
Therefore assume SM = SW ® w(bp+1). If SW ~ ¢ we are reduced to the

case of Remark 3 and we know how to solve the singularities then. So

bp+ 1)-

assume SW # ¢ and take the following spaces:

M X I, where I=[0, -1]
+ +
~(sw x bPTILP*L . py)
v(-SM) = normal bundle system of -SM in M X {-1} = -M,

+ +
Then we have v(-SM)C M X I and v(-SM) < - (sW x P IL@wP*? o).

The identification space

W= -(sw x PHLEPtL o))~ M x1I
v(-S(M))

realises a bordism between M =M X {0} anda (p, n)-manifold M’
whose last stratum has dimension n - p + 1. The singularities SM have
been resolved up to bordism, In general, if SW is of the form
SW = 21{(SW)k ® bﬁ+1, then one performs the above construction simul-
taneously on all terms (SW)k ® bﬁ+1 and gets the desired manifold M’',
See Fig, 11,

We remark that in order to get rid of singularities in codimension
p we have used bordisms, which have singularities up to codimension
p+1.

So now we have a well defined procedure to solve the singularities
of a (¢, n)-manifold M, stratum by stratum, starting from the last one
and going up by one dimension each time, until we are left with a (p, n)-
manifold, 1\7[, which is bordant to M and has singularities SM in co-

dimension one at most. In general we cannot solve SM as above, because
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The whole manifold is W.

sw ot
Fig. 11
the sequence N
2 ¢1
Qn—1®F2 - Qn-1®F1 = Qn-1®F0

is not necessarily exact. However al[SIVI] =0 in Qn-l ® F, because
it is the bordism class of the boundary of the complement of a regular
neighbourhood of SM in M.

The next lemma is important in what follows.

Lemma 2, 8, Suppose that M is a (p, n+1)-manifold with boun-

dary oM. Then, if oM has singularities up to codimension p and M

has singularities up to codimension p + h, there is a (o, n)-bordism
with boundary, W, oW, between M, @M and N, dN such that

(a) W has singularities up to codimension p + h+ 1 at most,

(b) oW has singularities up to codimension p,

(¢) N has singularities up to codimension p + 1,
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Proof., The intrinsic stratum of M in codimension p+ 1 is
a closed polyhedron, because the singularities of @M are in codimension
}p at most. Therefore the above construction for solving the singularities
.can be applied, essentially unaltered, to solve the codimension p + 2
‘stratum of M, dM by a bordism with boundary, W, oW, No new singu-

larities are created along the boundary during this process.
I

| Proof of Proposition 2, 5 (continued). Each M € [M] o deter-
mines an element of Ker ¢ , namely [SM]. This assignment depends on
the representative M; in fact, if M ~M, then SM, may be bordant to
SM by means of a bordism, V, with singularities and therefore in general
[SIVII] # [SIVI]. However, by Lemma 2. 8, the singularities of V can be
assumed to have codimension one at most and we can certainly write:

[SM] = [SIVII] + [N] where [N] €Im 62. Thus there is a well defined

map:

S . Qn(p) nd Hl(py Qn-l)

[M] = [SM] + im g, .

It is straightforward to check that s is a morphism of groups.

s is an epimorphism, Take [V]+ im az €H (p, @ _,);

§,[V]=10. Suppose V constantly labelled by b’ e B'; thenn :
Ve w(bl) bounds in ‘Qn-l ® Fo’ ie. V® W(b1) = @V, Take a copy of
V and label it by bl; 3V consists of a number of copies of V (non
constantly labelled in general); identify each copy with V ® bl. \7, with
the above identification on its boundary, becomes a (p, n)- manifold w
with singularities in codimension one only. Therefore, to each manifold

V, representing an element in H1 (p, Qn we are able to associate a

)
(0, n)-manifold W, representing an elemint in Qn(p), such that
s[W] = [V] + im \32. In fact, ~if W' € [W] we can assume, by Lemma 2. 8,
that W' has singularities SW' in codimension at most one and that there
exists a bordism N : W'~ W with singularities SN in codimension two

at most. Then [SW]- [SW']= az[SW] and so s is an epimorphism,
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Description of the map !

Define a map 1 : Q ®F - (0 by IM]=[M]; 7 is awell
defined homomorphism; so we have the sequence

~ ~

¢ A

Q ®F 5 Q ®F =~ Q).
l~q~)1 =0 because let [W]= Tal[M] and suppose M constantly labelled
by b! € B, Then take M X blL(bl, p) and observe that B(MXbIL(b],p}E
is bordant to W, So stick the two bordisms together and get a bordism
of W to the empty set by means of a (p, n+1)-manifold with codimensionj
one singularities,

Assume now {([M]) = 0. Pick a representative V of I([M]):
there exists a bordism, N, of V to ¢ suchthat N has singularities
SN in codimension one at most. We claim that § [SN] = [M]. In fact
remove from N a regular neighbourhood of SN in N to get the required
bordism between M and al(SN). Thus we have proved that the sequence
above is exact; which is enough to ensure the existence of a monomor-
phism { : Ho(p, Q) Qn(p) induced by 7,

Now it only remains to prove exactnegs at Qn(p).

sl = 0:sl[M] =0, because [M] has no singularities; hence
sl = 0.

Ker s Cim¢: let [M] € Qn(p) and assume, without loss of
generality, that M has codimension one singularities SM; s[M]p =0
means that [SM] € im \32. But then SM can be re-solved up to bor-
dism; therefore [M]=[M'] where M' is without singularities and hence
determines an element of Qn ® F0 whose image through I is [M].
Thus Ker s Cim ! = im .

The proof of the proposition is now complete.

Remark 2. 9. We have seen how the exactness of p is used in
the proof of the universal-coefficient theorem,

As pointed out before, if p is any based ordered chain complex
augmented over G, then the theory Q,(-, p) can be defined in the same -
way, But now the singularities in codimension greater than one are not

necessarily solvable; they give rise to the E’-term of a spectral sequencé
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running:

H (®, 2,60 2,050

This spectral sequence collapses to the universal coefficient for-

mula when p is exact.
3. FUNCTORIALITY

The classes of links constructed in Section 2 summarize the whole
structure of the resolution p geometrically, Therefore, from now on,
we refer to p as a linked resolution.

If p, p' are linked resolutions of G, G' respectively, a chain

map f:p—+p' is said to be a map of linked resolutions (or simply

linked map) if f is based and link preserving, i, e. :-

(a) f(bp) ¢ B'® for each 1P € BP.

(b) Let P € B®. If we relabel each stratum of the link
L(bp, p) according to f and if f(L(bp, p)) denotes the resulting object,
then f(L(b®, p)) = L(tbP, p*).

So there is a category, €, whose objects are linked resolutions

€
p =+ G and whose morphisms are linked maps. If Gb, is the category

of graded abelian groups, we have the following

Proposition 3.1. (X, A; p) is a functor € — Gb,. (For the

sake of simplicity we disregard the topological component of Q (-; -).)

Proof, Let 7 :p —p' be a morphism of €. If [M]p eﬂn(-; P),
we associate a (p', n)- manifold, 7(M), to M by relabelling all the strata
of M according to the based map 7. The correspondence
[M] b~ [T(M)]p gives a well defined natural transfor mation of theories

T, &.(-;p) > Q(-;p") and the functorial properties are clear.

Corollary 3,2, If the linked map T7:p = p' is a homotopy equi-

valence, then 7_ is an isomorphism,

Proof, This is an easy consequence of the universal-coefficient

theorem, There is a commutative diagram
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0= H (b, 2(X, A) =2 (X, A p) > H, (b, 2 (X, A) =0

n-1

Q (X, A))

(7, n-1

1

H (7, @ (X, A))L \ T, H
0~ H (', @ (X, A) ~& (X, A;p)~H (0, @ (X, A) =0

in which the side-morphisms are isomorphisms, because T is a homotof
equivalence, Therefore 7, is also an isomorphism,

If G € @b, a truncated linked (t. 1,) resolution of G is an exact

sequence

¢ ¢

2 1 €
F2 -’F1 -’F0 - G—0
satisfying conditions (a), (b), (c), (d) in the definitions of structured
resolution given in Section 2, A linked map between t. 1. resolutions is
defined as in the non-truncated case and there is a category, (73, whose
objects are t, 1. resolutions and whose morphisms are linked maps.

In the following, for each p € € and each topological pair (X, A),
we construct a graded abelian group {£2,(X, A; p)} which is a functor
on @ X (b (¢ = category of topological pairs). Fix a p' € C obtained
from p by choosing a based kernel of ¢2. A singular (p, n)-cycle in
(X, A) is a pair (M, f) consisting of a (¢', n)-manifold M and a map
f: (M, @aM) = (X, A) such that M has at most two intrinsic strata labelled
by elements of B® and B A singular (p, n)-cycle (M, f) is said to

bord if there exists a (p', n+1)-manifold W and a map F : W—=+X for
which
) M is a submanifold of oW
b) F|M=f and F(3W\M) C A
)
1

M has at most three intrinsic strata (labelled by elements

W is called a bordism. Define -(M, f) = (-M, f). Two singular (p, n)-
cycles (Ml, fl), (M2, f2) are bordant if the disjoint union

(M1 u-M, f1 U f2) bords in (X, A). Bordism is an equivalence relation
in the set of singular (p, n)-cycles of (X, A). Denote the bordism class of
(M, f) by [M, f] and the set of all such bordism classes by ﬁn(X, A;p).

An abelian-group structure is given in S~2n(X, A; p) by disjoint union.
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‘Obvmusly the above definition of £ (X A; p) is independent of the chosen
|p" € e,

Now we fix our attention on a particular t. 1. resolution, called
the canonical resolution of G and written ;. It is defined as follows:

¢ ¢

2 1 €
| I‘———»I‘—-—»I"—bG—>0

A\

F‘Ker\b1 FKere

where

Fo’ F Ker g, F Ker ¢1 are the free abelian groups on G, Ker g,
Ker ¢1 respectively

Bl is the obvious map; I‘l = FB

| B' = {(f, w(f))|f € Ker e C F Ker € and w(f) is a word expressing

9. f interms of the elements of GC T };

W, (t, wi) =f and ¢, = w

I"2=FB2; B’ = {h; w(h h) |h € Ker ¢, w(h) is a word
|expressing Bz(h), c(h) is a cancellation rule assoc1ated to hl. l[/2 and
¢2 are defined similarly

v has canonical bases G, Bl, B2 and a canonical structure in
which (h, w(h), c(h)) has (w(h), c(h)) as its structure,.

Lemma 3.3, If ¢: G— G' is a homomorphism of abelian groups,
e =
p=G is at. 1l resolution of G, y' is the canonical resolution of G';

then ¢ extends to a linked map d:p=— 7' in a canonical way.

Proof, Let p = {Fp, ¢ )}, »=1T ¢' }. We proceed by
induction on p. Write (§) =@, 9, $2). For p =0, put § (b b°) =¢e(b’)
for each b’ ¢ B, Inductively, let b° € BP, Then ¢ ¢p(bp) eKer %_1

b-15 b'P has

a canonical word w(b'p) and cancellation rule c(b'p) induced from those

and therefore it determines a basis element, bp in F Ker ¢!

of bP through the map ($p T ¢ 2) Therefore the assignment
P - (b‘p, w(b'p), c(b'p)) defmes ¢ with the required properties,
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Lemma 3, 4, 5*()(, A; p) gives a functor @ X € - Gb_.

Prooi. Functoriality on @ is obvious,

If T:p—~p' is a morphism of € and [M]peﬁn(-;p), let 7(M) be
the (¢!, n)-manifold associated to M by relcbelling each stratum according
to 7. The correspondence [M] *[T(M)]p gives the required natural trans-
formation 7, : &,(-; p) = &, (-; p".

Corollary 3.5, @, (X, A; y) gives a functor ® X @b~ Gdb,.

Proof. Functoriality on ® is obvious,

To each G ¢ @ assign ,(X, A; ) where y is the canonical
resolution of G; to each morphism ¢ : G= G', ¢ € @b, assign the homo-
morphism $* : S~2*(X, A;p) = S~2*(X, A; "), where ¢ is the canonical
extension of ¢ described in Lemma 3, 3 and a* is the induced homo-
morphism described in Lemma 3, 4,

In view of the previous corollary we shall write ﬁ*(X, A; G
instead of (X, A; ) and ¢, instead of \3*. A (y, n)-cycle [bordism]|
will also be called a (G, n)-manifold [(G, n)-bordism].

A linked resolution of an abelian group G

4 ¢ 4

3 2 1 €
p:0->F3->F2->F1-'F0-’G-'0

is said to be p-canonical (1 =p =< 3) if

(a) Fp-l ... 5 G = 0 is the canonical resolution of G of
length p-1, i e. F.1 = I‘.l, 0 =i=p-1, and the morphisms ¢.1 are
the same as in the definition of 7.

(b) Fp+1 = Fp+2 =0.

Let G € @b and PG € € a short linked resolution of G, (i.e.
F, =TF, =0). Thenwe have the homology theory {Q,X, A; pG), 2}
defined in Section 1. We also have the graded functor (X, A;G) :

@ - Gb, constructed at the beginning of this section. It follows from
Lemma 3, 3 that there is a canonical extension of the id: G+ G toa
linked map id p G = . The latter induces a natural transformation of
functors tG ' Q, (X, A; pG) -: Q,(X, A; G) obtained by relabelling the
P G-manifolds according to id, The next theorem is the main step
towards functoriality,
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Theorem 3.6. t.:Q,(X, A;p) = Q,(X, A; G) is a natural

equivalence of functors.

Proof. Let pi be an i-canonical resolution for i =2, 3, Then
there is a commutative diagram

- tG t1,2

2,X, A G) « QX Ajpy) = 2,X, A;p,)

t t
@ 1,3 2,3

2,X, A;p)

where ti, . and «a are the natural transformations obtained in the usual
way by relabelling the cycles according to the canonical liftings of

id: G- G. By Corollary 3, 2, ti,j is an isomorphism (1 =i< j = 3),
Therefore, in order to prove the theorem, we only need to show that «
is an isomorphism.

a is an epimorphism: it follows from commutativity and the
fact that t1, ) is epi.

« is a monomorphism: let M" be a (singular) G- manifold such
that a(M™) ~ ¢ in Qn(X, A;p}). Then M" determines an element
[M]‘02 € Qn(X, A; p2) such that tz, B[M]‘02
morphism, we deduce that there is a e, bordism W : M" K g. Finally

= (0, Since t2 5 is a mono-
b

we observe that e, < v is a linked embedding of resolutions and there-
fore W provides the required bordism of M" to zero in ﬁn(X, A; G).
The proof of the theorem is now complete.
We are now able to state the theorem asserting the possibility of
making bordism with coefficients in a short linked resolution p 5 G

depend functorially on G.

Theorem 3.7, (a) There exists a (graded) functor
R.(X, A;G): ® X Gb~ @b, which associates to each pair (X, A; G)
the graded abelian group €, (X, A, pG) where Pg is a fixed linked
presentation of G; to every morphism (f, ¢) : (X, A; G) = (X', A', G")
- = 1 . . .
the graded homomorphism (f,, tor ¢*tG) (@ (X, A; pG) -0 (X, A; pG,).

(b) Functors corresponding to different choices of pG are

naturally equivalent,
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The result follows immediately fron: Theorem 3, 6 and Corollary
3.5,

With the notations of the theorem, we define _(-; G), thep.l
oriented bordism with coefficient group G, by _(X; G) = @_(X; pG).

Corollary 3, 8. For every pair X, A, every n= 0 and every

abelian group G, there is a short exact sequence

0-+G® Qn(X, A) ~» Qn(X, A, G) = Tor(G, @ X, A))=*0

n-l(

which is natural in (X, A) and in G.

We are now able to say something about the splitting of the uni-
versal coefficient sequence associated to &,(-; G). Precisely, since
the sequence is natural on the category Gb, Hilton [2; Theorem 3. 2],

gives us the following

Corollary 3,9, For every abelian group G, the universal-

coefficient sequence of Qn(-; G) is pure.

From algebra we deduce:

Corollary 3. 10, For every pair (X, A), abelian group G and

integer n= 0 such that Tor(? .(X, A), G) is a direct sum of cyclic

n-1
groups, the universal coefficient sequence

00 (X, A)®G~Q (X, A, G) = Tor(e_,(X, A), G) =0

n-1

splits.
The class of examples of splitting considered by the previous
corollary is quite vast, because it includes the following cases;
(a) any G finitely generated
(b) any G such that its torsion subgroup has finite exponent
(¢) any Qn_l(X, A) such that its torsion subgroup has finite

exponent,

Remark 3. 11. As we have pointed out earlier, the definition of
(p, n)-manifold makes sense in the case of p being any linked chain

complex (not necessarily a resolution) and there is an associated bordism
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theory €,(-; p). Some of the facts about morphisms, that we have
established in this section, hold in the case of chain complexes, In
particular, if 7:p = p' is a linked chain map, p is a linked chain
complex and p' is a linked resolution, then the proof of Proposition 3.1
ipplies to give an associated morphism 7, : Q (-; p) = 2, (-; p").

The above treatment of functoriality can be summarized as
lollows. For every abelian group G, two functors @ -» Gb, have been
tet up, namely Q, (X, A, pG) and S~2*(X, A; G). They have different
features: the former is readily seen to be a generalized homology theory;
vhile the latter is natural on the category of abelian groups. Theorem 3. 6
establishes a natural equivalence tG between the two functors, which
Eroves at the same time that Q*(X, A; pG) is natural on @b and that
0,(X, A; G) is a homology theory.

In the following we may use whichever of the equivalent functors
9, X, A; pG), Q. X, A; pi), Q(X, A; G) is more appropriate to the

context (i =1, 2; pi = any i-canonical resolution of G).
4, PRODUCTS

If G, G' are abelian groups, let p be a linked resolution

¢ €
0-’17‘1 g F0 - G—0

with

and p' defined similarly. Then p ® p' is the augmented chain complex
{F", ¢"}
"
o o e
0-F ®F' - F QF' ®F ®F' =+ F ®F' = GG =0
1 1 0 1 1 0 0 0
where

¢;‘(r ®r)=¢(r)®r'-r¢'(r)
¢'(g®r) =g ®9'(r)

P (r®g) =¢(r) ® g’
eE"=e®¢
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p B p' is based by means of Bi, B'i (i =0, 1); itis structured in
dimension one by the structures of p and p'; in dimension two we
assignto r ® r' € B the word w(ir®r') =w()®r' - r ®w(r'). For
now we do not fix a cancellation rule.

Let M be a (p, i)-manifold with singularities SM; M' a
(©', j)>-manifold with singularities SM'. Form the cartesian product

M X M'. It has three intrinsic strata given by

(M- SM) X (M' - SM")
SM X (M’ - SM') U (M - SM} X SM’
SM X SM'

On each stratum we can put labels via the tensor product, i.e. if V is
a component labelled by x : V' labelled by x', V X V' ig labelled by
x ® x'.

We show that M X M', with such additional structure, is a
(p ®p', i+ j)-manifold. The first and the second stratum are easily
seen to be p ® p'-manifolds of the appropriate dimensions and we are
going to examine the third stratum. For simplicity assume SM, SM'
constantly labelled by r, r' respectively, so that SM X SM' is 1abe111
by r®r' ¢ B"2. The basic link of SM X SM' in M X M' is topologiqi
the join L" = L(r, p)*L(r', p'). L" with the structure induced by M>i,
is a (p ® p', 1)-manifold because M X M' - SM X SM' isa (p ® p')-
manifold and there is a product structure around SM X SM'. The zero[i

dimensional stratum of L" is isomorphic to L(r, p) ® r' ur ®-L(r', g

H

where ® is meant to act on the labels. But this represents the word :

dimensional stratum represents w(r ® r') and the 1-dimensional stratj

w(r ®r'). Thus L" is a (p ® p', 1)-manifold in which the zero- %,
b
|

is a union of disks, Therefore L" gives a unique cancellation rule to

assignedto r ® r' in order tohave L" =L(r®r', p ®p'").
M X M' is thena (p ® p', i+j)-manifold. See Figs. 12 and 13,
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Picture of a
neighbourhood of
SM X (M' - SM")
in M X M'

]
g1®r

basic link of a
point of SM X SM’
in M XM'

g, o g, g " r® g

Fig. 13
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We can now define a homomorphism
X i) ®Q.(-;p) 2, (-;p®p)
P, P
by

) =[M X M']

P, P o p®p'

XP,P' is of degree zero.
Let P, be a 3-canonical resolution of ~G ® G'. Then, by the

proof of 3, 3, there exists a canonical lifting id: p ® p' - pJ of

id: G®G'-»G®G'. Therefore we can define a cross-product homomorphism

XG, G' . Q*('; G) ® Q*('; G') = Q*('; G® G')

by the composition

r G9G' .
QP BQ (-;p) = —— 27—~ » QP
x -1
P, p' ~ 1,3
id,
Q. (-;p®p) > 2,(-5p,)

where Peog is a linked presentation of G® G' and i~d* is the usual

relabelling map (as in the proof of 3, 6),

Remark 4. 1. If an abelian group G is also endowed with a multi

plication that makes it into a ring, then we have a product homomorphism:

x
G, G *

Q.(-;G®G)

where XG G is the cross-product and m : G® G- G is given by:
m(g®g') = gg'. The homomorphism ¢ makes Q, (point; G) into a
ring and if (X, A) is a pair, ©,(X, A; G) can be given a structure of

graded module over the ring Q,(point; G) in the usual way.
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5 THE BOCKSTEIN SEQUENCE

Theorem 5. 1. On the category of short exact sequences of
helian groups

¢ v
0+G = G = G"=0

there is a natural connecting homomorphism

B: S~2*(-; G") -'S~2*(-; G")

of degree -1 and a natural long exact sequence

8 o Y 8

LwRG) R (56) = R (56N > ...

Proof. For the sake of clarity of exposition we prove the theorem
mder the assumptions: G' C G and (X, A) = (point, #).
Realize the exact sequence of abelian groups by the (not neces-

sarily exact) sequence of canonical resolutions and linked maps

I' % T - I
2 2 2
| b ¢
' & T - I
1 1 1
| | {
' & T = T"
0 0 0
| | |
0=+ G < G = G" = 0

1) Definition of B

‘ Let M™ be a G"-manifold, Suppose that the singularities of M

ihave only one connected component V& r", with r" = g'l' +... + g{' a

relation in G". We relabel V by an element of G' as follows, Choose
= oV = & o = g

Broeees B € G such that t[/(gi) g and g gj 8] gj. Then

W(g1 +... + gt) = g'l' +... + g{' =0 in G". Therefore by exactness

f'=2,8, isanelementof G'. Werelabel V by g' and geta
[G', n-1)-manifold V® g’
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Now suppose E], cers Et is another lifting of g7, ..., g as
above, giving a (G', n-1)-manifold V ® ¢', We show that V ® g' and
V 8 g' are bordant as (G', n-1)-manifolds. Relabel M\V by changing
g{' into gi=gi-Ei €G',i=1,,,., t. The sum r'=(g'1 +... +g£)-
(g' - g") is arelation in G'. Therefore take a labelled copy V ® r'
of V and form the polyhedron W = (V ®&r') X L(r', G') U M, where
L(r', G') is the link generated by r' in G' and the union is taken alomng
the common part V X cone(g'1 +... + g{) (see Fig. 14). W isa
(G', n)-manifold and provides the required bordism between V ® g' and
vVeg,

g' g
Ve ! '
5 / 5 o 5
Q-O g \ ’
g
g 3 2 Vver!
2
Fig, 14

If the singular set, S(M), of M has more than one component,
the relabelling construction can be performed componentwise and one
gets a (G', n-1)-manifold, (M), whose bordism class is independent of
the various choices.

Next we show that 8(M) depends only on the bordism class of
M, ie if M S g then BM) € ¢ Let W be a (G", n+1)-manifold wil
W=M, If VCW\SW is a component labelled by g" € G", choose
g €G such that ¥(g) = g" and relabel V by g Let T" be a com-
ponent of the n-stratum of W. The sum in G of the new labels on the
sheets coming into T" is an element g' of G'. Werelabel T by g
Finally, if T" !

Trll ®gl, ..., T: ® g are the sheets merging into ™1

is a component of the (n-1)-stratum of W and
then

s
= ) gi is a relation in G', because Tn_1 was originally labelled by
i=1

72



a 'relation amongst relations' of G". We label ro-1 by r'. I B(W)
denotes SW with the relabelling described above, then B(W) provides
the required G'-bordism B(M) ~ ¢,

Now we are entitled to define

B:q (-;6M=a ,(-;G")

n-1
by

B(M] ) = [B(M)]

G" G' M

(2) Exactness at bn(-; G)

() y,9,=0. If M' is a (G', n)-manifold, then M" =¥ ¢(M")
is a (0, n)-manifold. Therefore M" ~ ¢ by the proof of the universal-
coefficient theorem,

(b) Ker ¢, CIm ¢_. Let M" be a G-manifold and W" a
(G", nt+l)-manifold with awW" = Y(M). We show how to modify W" in
order to get a G-bordism between M" and a G'-manifold M'",

Relabel each component of the (n+1)-stratum of W" by elements
iOf G, obtained from the G"-labels through a lifting G‘-_'_G" such that

(a) The relabelled n-stratum of oW" coincides with the n-
stratum of M.

(b) If two components are labelled by the same element of G",
‘the corresponding liftings coincide,

Let V be a component of the n-stratum of W" and g, ..., &
1 Py

v
the new G-labels around V; g' = 2 g is an element of G'. Attach a
i=1

new sheet (VXI)®g' to V iff g' # 0 and label V by the G-relation
r= Zigi - g' (see Fig. 15). Nowlet V®r, V®T, V®T, ... be the
components of the relabelled n-stratum merging into a component T of
the (n-1)-stratum. The corresponding new sheets which have been in-
serted, namely (VXT)®g', (VX ®E, (V)X g, ..., are, by
construction, such that r'=g' + g' + E’ + ... is a relation in G'.
Therefore we can glue them to one another along a new n-dimensional
sheet (T X I) ®r'. The resulting polyhedron W provides the required

G-bordism.
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<
Y
el

Fig, 15

(3) Exactness at fzn(-; G")

(a) By, =0. Let M" be a G-manifold. According to the

definition of 8, we have BY(M) ="~V ® 0, where V varies over the
\'
set of components of S(M)., But V® 0~ ¢ by a trivial G'-bordism.,

(b) Ker 8 CIm y,. Let M"" be a G"-manifold. For the
sake of simplicity let us assume that the singularities of M" have only
one component V& r"; r" = Eigi'. Then A(M") =V ® g', where
g = Eigi’ ve, = g!l'. By assumption there is a G'-bordism W':B8(M") ~ ¢
We construct a G-manifold M" as follows.
(i) Since A(M") has no singularities we can assume that W' has
singularities in codimension one at most, because otherwise we solve
the codimension-two stratum as in the proof of the universal-coefficient

theorem.,
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(ii) In M" we replace each g{' by 8 and V®r" by V®&r, where

r=g'- 2.8

(iii) We attach W' to the relabelled M" identifying oW' with V®r,
It is readily checked that the resulting labelled polyhedron m"

is a (closed) G-manifold such that (M) (:’ M"., See Fig. 16

Fig, 16

(4) Exactness at fzn(- ;G

1 be a G"-manifold with connected

(@ ¢8=0 Let M™"
singularities V®r" r" = Eigi'. Then B(M") =V ® g' where

g = Zigi and yg, = g{. We construct a G-bordism W : A(M") ~ ¢ as

follows.
(i) We relabel M by changing each g{' into 8; and r" into
r= Eigi -g\.

(ii) We attach a new sheet (V X 1) ® g' to the relabelled M" along
the singularities V ® r, See Fig. 17

" "
gZ ver" g;
gl &
Fig, 17
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(b) Ker ¢, C Im 5. Let M™ be a G'-manifold and W:M'"" ~¢
a G-bordism. From W we get a G"-manifold W" of dimension (n + 1)
as follows,

(1) We remove from W all the strata which are labelled by elements
of G' or by relations or by 'relations amongst relations’'.

(ii) We relabel the remaining strata according to the map Y. The
resulting object W" is a (G", n+1)-manifold with singularities in co-
dimension =2 and it is closed because oW = M' has been removed in
step (i),

(iii) We get W" by re-solving the codimension-two singularities of
W" up to a bordism which has singularities in codimension =3,

Now we show that B(W") is G'-bordant to M'. Let Q" be the
singular part of the bordism used in (iii). Q" has at most two sheets;
the non-singular one is labelled by relations in G" and the singular one
is labelled by 'relations amongst relations'; f(Q") (constructed as in
the proof that the Bockstein is well defined) realizes a G'-bordism between
B(W") and B(W"). Therefore we only need to provide a G'-bordism N'
between SB(W") and the original M'. To this purpose we reconsider the
G-bordism W and remove from it all the top dimensional strata which
are not labelled by elements of G'. The resulting object W0 is not a
G'-manifold in general. We show how to make W0 into the required
G'-bordism by inserting new sheets.

(i) Let V®r be a component of the n-dimensional stratum of W,
with I‘=g'1 +... + gr')+ g +... +gq (gi eG‘;g]. € G- G'). Then
V®g' CBW") where g' = g t... F gq. Therefore we attach a sheet
(VXD®g' to W0 along V and change the label r into

r' = g; +... + gr') + g wh_ich 1_s now a relation in G'.

(ii) Let V®r, VXr, V®Tr, ... be components merging into a
component T ® 1 of the (n-1)-stratum, where r=r+Tr 47+ ... is
a relation amongst relations in G. The corresponding new sheets which
have been inserted, namely (VXI)®g' (VXI)®g', (Vx1) ®E', e
are, by construction, suchthat r' =g'+g' + g +... is a relationin
G'. Therefore we can glue them together along the n-dimensional sheet
(T XI)®r'. The resulting polyhedron provides the required G'-bordism
N': B(W") ~ M".
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The proof of exactness is now complete and naturality is clear.
6. BORDISM WITH COEFFICIENTS IN AN R-MODULE

In order to define coefficients in an R- module we need the following

additivity lemma,

Lemma 6.1, If o, B:G= G' are abelian-group homomorphisms,
then (@ +f), =a, +B, : 2,(-;G) =~ Q,(-; G".

~ ~ ~ P e’
Proof. Consider the chainmap ¥ = a + 8- (@ + 8) where
Zx E m are the canonic’aLrl’ftings of a, B, a+p I [M] ebn(-; G),
put l[/(M = a(M + B(M) - (a + B)(M). Then ¥(M) is a (G', n)-manifold
and we only need to prove that l[/(M ~ ¢ in hn(-; G'). But E is a lifting
of the zeromap 0 : G— G'. Therefore there exists a chain homotopy
D:y=~0
] ¢

2 1 [
T - 1" - 1" - - 0

L/ /
/«wﬁ‘

I -
2

so that J/l =D¢ +4¢.D

ll/o = ¢1D 0
By definition the singularities of { (M) are given by ¥ (SM). Consider

the induced diagram

1®¢ 1R¢
e ()er -—;&n ®r —>! 0 _®r
n-1 -1 1 n-1
1®D
1
)T —>Q @I — g  OT
l’l- 2 1®¢,2 n- 11®¢1 n- 0
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where 1 ® D is now a homotopy of 1 ® \7/ to zero. As we know, SM

represents an element in Qn_l(—) ® I‘l. So we have

W(SM)=(18y )(SM)=(1®D ) (18¢)(SM)+ (1®¢’) (1®D )(SM).

I~3ut (1 ®¢)(SM) ~ ¢ because [SM] = Ker(l ® ¢1). Therefore

Y(SM) = (1 ® ¢')(W'), where W'=(1® Dl)(SM). By the proof of the
universal-coefficient theorem this is sufficient to ensure that the singu-
larities J/(SM) of J/(M) can be resolved by a bordism of (G', n)-
manifolds. So, using the homotopy D, we have eliminated the singular
stratum of J/(M). Let V' be the resulting (G', n)-manifold, If V'0 is
z~1 component labelled by g;) € G', then there exists g, € G such that
ll/o(go) = g;), because the process of resolving the singularities in (M)
does not change the labelling of the top dimensional stratum. Therefore
the element of Qn(-) ® I"o represented by V' is the image of some

[V] € Qn(-) ® I‘o through 1 ® Jjo' Then again we have
Vi=9(V)=(1®¢)(1® D )(V)

so that V' may be borded to ¢ by a (G', ntl)-manifold with singularities
givenby (1 ® Do)(V).

We now turn to the main object of this section, i. e. putting co-
efficients in an R-module. 1In the following R will be a commutative
ring with unit.

If G is an R-module, let €, (-; G) be bordism with coefficients
in the underlying abelian group G; Q *(-; G) has a natural R-module
structure, In fact, we must exhibit a ring homomorphism
0:R =+ Hom,(2,(-; G), €,(-; G). The above additivity lemma, together

VA *
with functoriality, tells us that there is a ring homomorphism

o' : Hom,(G,G) = Hom €, (-;G), 2.(-;G6)

zZ

defined by o'(f) =f Therefore we can define o by the composition

g
R = Hom,(2,(-; G), 2,(-; G)

x°
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where o" is the R-module structure of G.

The pair {2,(-; G), o} is 'bordism with coefficients in the R-

module G'. The structure o will be dropped from the notations.
If £f: GG is an R-homomorphism, then for every r ¢ R we

have commutative diagrams

f f
G —> G Q,(-;G) ——> Q(-; G
11‘ lr o(r) l functoriality lo(r)
f f
G —=G' Q,(-; G) — > Q. (-; G"

Hence € (-; G) is a functor on the category of R-modules and R-homo-
morphism, From the naturality of the Bockstein sequence for abelian
groups, it follows that there is a functorial Bockstein sequence in the
category of R-modules, Summing up, we have the following:

(a) ©_ (-; G) is a functor on the category of R-modules

*
(b) €Q,.(-; G) is additive
(c) For every short exact sequence of R-modules, there is an
associated functorial Bockstein sequence.
Properties (a), (b), (c) form the hypothesis of Dold's Universal-
coefficient theorem [1].

Therefore we deduce that there is a spectral sequence running

2
E =Tor (% (-;R), G) = _(-; G
b, q p( q( ; R), G) . MCHEE)

This completes the discussion of the case of R-modules as co-
efficients, In later chapters we shall only deal with abelian groups; but
it is understood that everything we say continues to work in the category

of R-modules,
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IV:-Geometric theories

In this chapter we extend the notion of a geometric homology and
cohomology (mock bundle) theory by allowing

(1) singularities

(2) labellings

(3) restrictions on normal bundles,

The final notion of a 'geometric theory' is in fact sufficiently
general to include all theories (this being the main result of Chapter VII).
A further extension, to equivariant theories, will be covered in Chapter V.

In the present chapter, we also deal with coefficients in an arbi-
trary geometric theory. A geometric theory with coefficients is itself
an example of a geometric theory and it is thus possible to introduce co-
efficients repeatedly!

The chapter is organised as follows. In §1 we extend the treat-
ment of coefficients in the last chapter to cover oriented mock bundles
and in §82 and 3 we deal with singularities and restrictions on the normal
bundle, In §§4 and 5 we give interesting examples of geometric theories,
including Sullivan's description of K-theory [11] and some theories which
represent (ordinary) Zp-homology. Finally §6 deals with coefficients

in the general theory.
1. COBORDISM WITH COEFFICIENTS

We now combine Chapters II and III to give a geometric description
of cobordism with coefficients, It is first necessary to introduce oriented
mock bundles (the theory dual to oriented bordism), We give here the
simplest definition of orientation, an alternative definition will be given
in §2,

Suppose M, v™ ! are oriented manifolds with V C @M. Then

we define the incidence number &(V, M) = £1 by comparing the orienta~
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tion of V with that induced on V from M (the induced orientation of
dM is defined by taking the inward normal last); &V, M) = +1 if these

orientations agree and -1 if they disagree. An oriented cell complex K

is a cell complex in which each cell is oriented and then we have the

incidence number €&(7, ¢) defined for Ml ek

An oriented mock bundle is a mock bundle £/K in which each

block is oriented, K is oriented and such that, for each Ml A €K,
we have e(&(7), £(0)) = €(71, 0). We leave the reader to check that the
theory of oriented mock bundles enjoys all the properties of the unoriented
theory in Chapter II (the Thom isomorphism theorem holds for oriented
bundles and Poincaré duality for oriented manifolds) - more general argu-
ments will in fact be given in §2. This theory will be denoted £*(,) and
the dual bordism theory Q,(,).

Now let G be an Abelian group and p a structured resolution of
G. We define the mock bundle theory £*(,; p) by using p-manifolds in
place of ordinary manifolds, More precisely, a (p, q)-mock bundle
£/K is a polyhedron E(£) with projection p : E(§) = K such that, for
each o e K, p-l(o) is a (p, q+i)-manifold with boundary p_l(c'r), called
the block over o and denoted £(0), and such that &((7), £(0)) = &(1, 0)
for each 7< o € K. Note, €V, M) is defined for p-manifolds Vn-l,
M" only when either V or -V C dM as p-manifolds (i. e, the inclusion
respects the labellings, orientations and extra structure), then
e(V, M) = +1 in the first case and -1 in the second. -V denotes the
p~manifold obtained from V by reversing all the orientations.

It follows from the arguments in Chapters I and II that Q*(, ; p)
is a cohomology theory, dual to the theory €,(,;p) defined in Chapter
II, and from the arguments in ITI §4 that Q*(P, Q; -) determines a
functor on the category of abelian groups.

We will leave most of the details to the reader and make some

remarks about some of the more delicate situations:

Remarks 1.1, 1. If {/K is a(p, q)-mock bundle and IKI is
an (oriented) n-manifold, then E({) is a (p, n+q)-manifold. The proof
of this is identical to the proof in Chapter II - the required extra struc-

ture all comes automatically!
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2. In order to prove Poincare duality, one needs Cohen's
transversality theorem in its full generality, i.e. if f:J— K is sim-
plicial, then f (A) is collared in f '(A*) for each A €K. Here A*
is the dual cone of A in K with base .7\ From this theorem it follows
that, if f: E =+ K is a simplicial map, E is a (p, n+q)-manifold and
|K| is an n-manifold, then the inverse image of a dual cell in K cuts
the singularities of E transversally, sothat f: E = K can be made

into the projection of a (p, q)-mock bundle.

3. A discussion completely analogous to that of III §4 can be
carried out. In particular there are functors £+*(,; G) natural on the

category of abelian groups and there is a universal coefficient sequence
0-ad(,)®G-al(,; 6 ~Tor(@!(,), @)= 0

also natural on the category of abelian groups,

4, If ¢:G®G - G" is a pairing, the cup product
Qq( ;G ® Qr( ; G~ Qq+r( 3 G") and the cap product
d, . .Gt
veee e =a .,
construction and the cross product defined in Chapter III.

(; G") are defined using the usual pull-back

2. RESTRICTIONS ON NORMAL BUNDLES

In this section we consider geometric (co)-homology theories
which can be obtained from pl (co)-bordism by restricting the normal
bundles of the manifolds considered, We sketch the case of cobordism.
Details for the bordism case may be found in [13; Chapter II}.

Let E(%) 2 K be a mock bundle projection, then we can choose
an embedding i: E(§) =+ K X R°° sothat p = moe i, we then have a stable

normal block bundle v,/E(£) on E(¢) in KX R, There is a classifying

3

bundle map
L 3
— E(7)
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where y/BfL is the clasgifying bundle for stable block bundles.

Now suppose that we have a space X and a fibration f: X ~» BPL..
Then an (X, f)~mock bundle is 2 mock bundle £ together with a stable
normal block bundle v,, a classifying bundle map (7A7£, ng) and a lift

. g,
of ng in X:
pa

3

The theory of (X, f)-mock bundles is set up in exactly the same
way as the theory of bundles, In order to have products one needs in

addition a commutative diagram

XXX ——— X

fxf 1f (2.1)

BPL X BPL ———2—» BPL
where @ is the map given by Whitney sum. Using diagram (2. 1) external
products can be defined by qun =m ° (qg X qn). Similarly cap products
are defined with the corresponding bordism theory (maps of (X, f)-mani-;
folds into the space) and the proof of Poincaré duality (for (X, f)~mani-~
folds) needs little change. The proof of the Thom isomorphism theorem

for bundles with stable lifts in X can also be readily modified.

Examples 2,2, 1. Oriented theory. X = BSPL and f is the
natural map, This theory has products. See also the alternative des-

cription given in §1.

2. Smooth cobordism. X has the homotopy type of BO and

f:X - BPL is defined using PD as in [7; §0]. This again is a theory

with products.

3, Pl spin cobordism, X is the double cover of BSP~L and

f is the covering map. Again we have products.
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4, Stable cohomotopy. X is contractible, Again we have

products. Poincare duality holds for 7~manifolds.

5. Labelling. Let S be a discrete set and let X = BPL X S
and f the projection, Then a connected (X, f)-manifold is just a mani-
fold labelled by an element of S. Any function S X S= S gives this

theory products. See also the remarks at the end of the next section.

3. SINGULARITIES

Our treatment of singularities is similar to that worked out by
Cooke and Sullivan (unpublished) or to be found in Stone [9].

Suppose we are given a class .Bn of (n-1)-polyhedra (closed under pl
isomorphism). Then a closed .Bn- manifold is a polyhedron M each of

vhose links lies in .Bn. A theory of manifolds~with-singularity consists

of a class .Bn for each n=0, 1, ... which satisfies:
1. each member of .Bn is a closed 'Bn- 1—manifold
2. S.Bn_1 C .Bn (i. e. the suspension of an (n~1)-link is an n-link)
3. C.Bn_l n .Bn = ¢ (i.e. the cone on an (n-1)-link is never an

1-1ink),
Then an £-manifold with boundary is a polyhedron whose links lie

dither in .Bn or C.Bn_ Then the boundary consists of points whose

links lie in the latter clilss, and is itself a closed .Bn_ 1 manifold. More-
wer the boundary is locally collared (since its links are cones) and
ience collared [8; 2.25].

Notice that axiom 3 is necessary to ensure that the boundary is
vell-defined. Axiom 2 ensures that if M is an .Bn_ 1-manifold then
I X1 is an .Bn—manifold with boundary. Axiom 1 implies that a regular
eighbourhood of a polyhedron in an .Bn—manifold is itself an .Bn-manif old
yith boundary.

At this point we can remark that a manifold with singularities has
ill the geometry of an ordinary manifold which was used in setting up
tordism and cobordism (mock bundles) and we get homology and co-
omology theories T.’E( ), T'f( ,). Moreover the proofs of the Poincaré
juality and Thom isomorphism theorems are unaltered, Note however,

ee below, that products are not defined in general (but cap product with
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the fundam:ental class of = manifold (amalgamation) is -iways defined).
Products

Suppose M and N ure closed £-maiuifolds then M X N is in

general not an £-manifold. However it is one if we have:
4, L «L L (i. e. the join of two links is again a link).
n q n+q

Then, with axiom 4, we have cup and cap products. More
generally if &£, 9 and Ol are three theories and £ « N C I then we
have cup and cap products from £ and 9 theory to 3 theory. For
example, if § is ordinary bordism theory (i.e. Sn = {(n-1)~sphere })
then £ x 8§ C £ by axiom 2, so that, as remarked above, cup and cap

products with bordism or cobordism classes are always defined.
Basic links

A subset & of £ =uU .Bn is basic if no link in & is a suspension

and each link in £ is isomorphic to a suspension of a link in &,

Examples 3. 1. 1, -Bn is the class of (n-1)~spheres. As men-
tioned above, this is ordinary bordism theory. The set of basic links

here is {¢}.

2. Basic links are ¢ e.BO and (n points) € .131. Thus
£y = {9}, L= {X|Xx =s" or (n points)}, £q: xX|x = 1 or
a-2, (n points)}, q = 1.

This theory is 'twisted Z -manifolds'. A manifold in the theory
is either locally an ordinary mamfold or like R™ >< C (n points), This
theory can be made into 'coefficients Zn' by adding orientations and an
untwisted neighbourhood for the singularity (see Chapter ITI, Example
1. 1(2)). The twisted theory is interesting in connection with represen-

ting Zn-homology (see 8§5).

i~ _ ~ a0 . _
. 8 = 1iph, & = {x|x=s’}, £ isallclosed £
manifolds.
This theory is 'ordinary' homology with coefficients Z2. To
obtain coefficients Z one needs to orient the top stratum, We can think

of this theory as obtained from bordism by killing all manifolds except
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he point, (§4 contains details of killing, )

To combine £-theory with the restriction on the normal bundle
of the last section, it is necessary to use the notion of 'normal block
bundle system' as in Stone [?]. The resulting theories then enjoy all
the usual properties - the class of bundles and manifolds for which a
theory has Thom and Poincaré isomorphisms depends on the stable
restrictions imposed on the normal bundles. Rather than attempt a
formal analysis of this general setting, we will give several examples
in subsequent sections, which should make the general properties of
these theories clear., We already have the examples, in Chapter III, of
{oefficients (all the structure of a manifold with coefficients p is in-
tluded in 'restriction on the normal block bundle system') and in
{{hapter VII, we will give a family of examples, generated by the killing
process of §4, below, which include all homology theories,

Finally we remark that we have now arrived at the general notion
of a geometric theory, since 'labelling' is included in 'restriction on

normal bundle’, see Example 2, 2(5).
i, KILLING AND K-THEORY

In this section we give the general description of 'killing' an
tclement of a theory and apply it to give a geometric description of

sonnected K-theory at odd primes due essentially to Sullivan [11]. See

jlso Baas [15]. Killing is defined in the following generality:

1. U and V are geometric theories.
2. M is a closed (V, n)-manifold,
3. There is a natural way of regarding W X M as a V-manifold,

‘§or each U-manifold W (e.g. by relabelling or forgetting some structure).
Then the theory V,/U X M is defined by considering polyhedra P
}Jith a two stage stratification P O §(P) and extra structure such that:
1. P - S(P) is a (V, q)-manifold.
2. S(P) is a (U, q~n-1)-manifold.
3, There is a regular neighbourhood N of S(P) in P and a
! isomorphism h : N - S(P) X C(M), which carries S(P) by the identity
0 S(P) X (cone pt. ).

gy
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4, h is an isoinorphism of (V, q)-manifolds off S(P) (where
S(P) X {C(M) ~ (cone pt.)) is regarded as a V-manifold by part 3 of the
data).

P is then called a closed (V,/UXM, q)-manifold. There is an
obvious notion of V /U X M-manifold with boundary and hence we have

geometric homology and cohomology theories (V,/U X M), and (V/UXM]
Notation. If U= V then we collapse the notation to V /M.

Proposition 4.1, There are long exact sequences

X L o

= U X A) >V (X, A) = (V/UXM) _ (X, A) = U _

q+n q 1(X, Al

q+n
L

X
-y, @ - Vi e, @ - (vux me"

7 gq-1
®, Q -uvi P, Q.

in which the homomorphisms are defined as follows. x is multiplication

by M followed by the identification of part 3 of the data. ¢ is the identi

on representatives. o restricts to the second stratum [i. e.

o(P O S(P), f) = (S(P), f|S(P)) etc. |.

Remark 4.2, There is also a notion of killing a whole family

{Mi} of elements simultaneously. In this definition S(P) =u (S(P)i)
i
and the neighbourhood of S(P)i satisfies the conditions of the definition

but with Mi replacing M. This is then a generalisation of the killing
used in Chapter III to define coefficients. 4.1 becomes sequences like:
X L o

-®U =V = (V/UXM, -0 U ...
® Uy (VU ) > Vg1

i q+n i'q+n

which the reader can check is a generalisation of the Universal Co-

efficient Sequence. C.f. Remark 6. 1.

Proof of 4,1. (Compare the proof of the universal coefficient
formula.) The spaces X, A, P, Q play no role in the proof, so we

ignore them.

tx = 0. Let W be a U-manifold then W X M bounds the V,/U X M-
manifold W X C(M).

Ker ¢t CIm x. Let W be a V-manifold bordant to ¢ by V/UXM-
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bordism W1' Then M X S(Wl) is bordant to W by the V-bordism
W1 - (nbhd. of S(Wl)).

ot = 0, A V-manifold has no second stratum.

Ker c CIm t, Let W, S(W)) be a V,/UX M-manifold such that S(W)
bounds the U-manifold B. Form the product B X C(M) and attach it

to Wx {1} in W X1 by the identity on S(W) X C(M). This constructs
a V/UXM-bordism of W= W X {0} toa V-manifold.

xo= 0, If (W, S(W)) is a V/UXM-manifold then S(W) X M bounds
W - (nbhd. of S(W)).

Ker X ¢ Im o, If W is a U-manifold such that W X M bounds the
V-manifold W', then we can glue W X C(M) to W' along WX M to

form a V /U X M-manifold with second stratum W.

Corollary 4.3, Suppose V is a ring theory and [M] is not a

zero-divisor in V_(pt.) (i.e. multiplication by [M] is injective) then

V,(pt.)
ideal generated by [M]

(VM) (pt.) =

Proof. Consider the sequence with X = pt, A = ¢.

From now on we will, for notational simplicity, deal only with the
homology theories. Exactly similar constructions will hold for the co-
homology theories.

Let Qfo( ,; Z[%]) be the theory 'smooth bordism with Z[3 ]
coefficients' defined by considering p- manifolds, where p is a fixed
resolution of Z[3], with a reduction to SO of the stable normal bundle
of each intrinsic stratum (see the last two sections). By the universal
coefficient sequence, this theory is isomorphic to Qfo( ,) ® Z[%] the
localisation of Qfo at odd primes.

From results of Wall [14] we know that all the torsion in Qfo
ls 2-torsion and hence that Qf pt. ; Z[% ]) is a free polynomial algebra
n generators [Mi], [Mz]’ ..., moreover we can take index(Ml) =1

ind index(Mi) =0,i> 1: take M1 = CP2 and t(? obtain index (Mi):O
subtract an appropriate number of copies of (sz)]' Now define theories

M i=1, 2, ... asfollows:
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T I o /M, and inductively I = J"l/Mi.

—
N

[

et

Finally let
J=lim{J' = I =3 =... ).

Thus J is the geometric theory obtained from smooth bordism by intro-
ducing coetficients in Z[3] and then killing all the free generators

except CP2. Note that by repeated use of 4. 3 we have:

Proposition 4.4, J, (pt.) = Z[3][t] where t has dimension 4,
and is represented geometrically by CP2 Ebelledﬂ 1.
Now let K denote the theory ko (,) ® Z[z], i.e. the localiza-

tion of real connected K-theory at odd primes.

Theorem 4. 5. There is a natural equivalence of theories

Yy :K—=+J

Proof. Sullivan [10], using a method similar to Conner and
Floyd | 3], has constructed a natural transformation
SO
. Q*

S : (9)®Z|—_}2]-’K*(’)

such that s(pt.) maps [Mn] to 0 if n# 4k andto index(M) tk, where
t is the generator of K (pt.) = Z[z][t], it n=4k. He also proves that

s induces an isomorphism

Q§O( ,) ® QSO Z[}é][t] = K*( )

where Qfoz Qfo(pt_) acts on Z[z ][t] by
®1 s
@0 + oSO gza) - K, (ot.) = Z[5]t]

We will construct a natural transformation ¥ in the commutative

diagram
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S
20, ; 24D = o9 ,) e 213
L natural projection (4. 6)
4 SO 1
J0,) =—Q7(,)® Zz)[t}=K,(,)
QSO

and then it follows from 4, 4 that Y(pt.) is an isomorphism since the
class of CP2 is the generator of both groups. ¥ is defined on genera-
tors by the formula ¥ (M, f), qtk) = (gM X (CPZ)k, fe 171), where

q €Z[3] and gM means M labelled by q. We have to check that V¥
is well-defined. The only non-trivial part is that if [W] € Qfo(pt. ) then

Y(M X W, f o ), 1) =w(M, f), s(W). Le. that

n/4

(M %X (W - index(W)(CPZ) ), fem)

1

is zero in J (here index(W) = 0 if n # 4k, for brevity of notation), This

follows from:

Proposition 4. 7. ([W]= 0 if index(W)= 0. ¢ is as in diagram
4,6
- ; SO 1 1
Proof, [W]=2 a,Ww, in Q.7(,; Z[z]) where a € Z[z] and
Wi are monomials in the generators CP2 = Ml, M2, ... . However,

}using the product formula for the index, we can read off index(W) as
|

‘al where a is the coefficient of (Ml)n/4

, since all the other Mi
thave index 0, It follows that @ =0, and we can bord W to ¢ in the

|
‘theory J by using bordisms like C(Mz) X Wi, where W, = Mzwi'

|
* Remark 4, 8, There is a similar geometric description of con-

nected KU-theory given by a similar construction using complex bordism
and the Conner-Floyd map [3).

5. MORE EXAMPLES

Example 5.1. Some theories which represent Zp-homology.

Let p be prime. Define a theory of singularities by the basic
links ¢ 6.130, o) 6.131, (p) * (p) € -132, ... where (p) is a setwith p
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points in it. We call an £-manifold a p-polyhedron. This is a ring
theory (see §3), the ring closure of 'twisted Zp-bordism‘ (Example

3, 1(2)). An orientation for an n-dimensional p-polyhedron is a generator
of Hn(P; Zp) = Zp' The theory of oriented p-polyhedra represents

Z -homology, in other words the natural maps Tn( ) = Hn( ; Zp) and

T4() - Hq( ; Zp) are onto, This follows from:

Proposition (see [6]). Let U be a connected ring theory with

U (pt.) = Zp. Then U represents Zp-homology if and only if
Uq(Ln) - HQ(Ln; Zp) is onto, where Lrl is the Lens space Sn/p of

arbitrarily high dimension n.

Now the generators of H*(Ln; Zp) are a and B, where a € H
is represented by the inclusion of Ln-2 in Ln’ and B € H1 is represen-

ted by Ln- ] Dn'1 - Ln, where the disc is glued on by the p-fold cover,

2

]
Note that the Bockstein of 8 is @, Both a and g are p-polyhedra and
the representation property follows,

We can modify T, in various ways, still preserving its property

of representing Zp-homoinogy, for example:

1. Make stable restrictions on the normal bundles of the
strata, E.g. impose stable orthogonal or unitary structures. Note that
a and B have such structures.

2, The normal bundle of one stratum in the others can be
restricted. I.e, we can restrict the freedom to 'twist'. The point is
that the group used in the construction of § is Zp not Ep as allowed
for in the definition of a p~polyhedron. To make this restriction into a
ring theory restriction, we impose the restriction that the group for the
normal block bundle of a stratum of codimension r + q in a stratum of
codimension r is the wreath product Zp it Zp it Zp ve rb Zp (r copies).

Both these modifications are examples of restriction on the norma
block bundle system. For more information on the algebra behind p-

polyhedra see Bullett [1].

Example 5,2, Euler spaces,
This theory was invented by Akin and Sullivan [16] and has inter-

esting properties. Define link classes by
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. {g}, L= {@@)|a even} and inductively

£ = {P|P is aclosed £ _,-manifold with even Euler

&
f

characteristic }.

Then an £-manifold is called an Euler space and can be thought of as a
polyhedron with 'even local Euler characteristic’'. Note that manifolds
are Euler spaces and that Euler spaces form a ring theory, An Euler
space has Steifel homology classes, [12, 16], (defined using the
combinatorial definition of Whitney et al., see Halperin and Toledo [2]).
The triangulatiorf of a complex algebraic variety is an example of an
Euler space (Sullivan proves this by a careful induction on dimension

using the fact that each stratum is even-dimensional),

Example 5, 3. T_he Casson-Quinn theories,

Finally we mention some examples of geometrically defined (co)-
homology theories, which do not fit as described into the pattern of this
chapter, These are the theories whose coefficients are the surgery ob-
structions. For details of the definition see Quinn [5]. A 'manifold' in
the theory is a surgery problem with a reference space (corresponding
to fundamental group) and a boundary on which the problem is a homotopy
equivalence, Of particular interest is the theory (Q4G/PL)*, which is
the Casson~Quinn theory corresponding to mo= 0. Sullivan has shown
[10] that, at odd primes, this theory is isomorphic to K-theory, as in
84, This raises the question of whether there is a convenient geometrical
description for (Q4G/PL)* (or even for G/PL, itself) at all primes,
Also relevant here is the question of whether K-theory has a simpler
geometrical representation than that given in §4, Note always that, by

Chapter VII, all cohomology theories have some geometric representation.
6. COEFFICIENTS IN A GEOMETRIC THEORY

In this section V denotes a general geometric theory, that is to
say, a theory with singularities, labellings and generalised orientations,
as in §82, 3. We will explain how coefficients work for V-bordism. Wwe
leave the reader to take care of V-cobordism (V-~mock bundles) and to

‘ormulate the appropriate Thom isomorphism and duality theorems. This
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section is modelled on Chapter III, we follow the section headings of

Chapter III, explaining where the difficulties lie,
Short resolutions

Let p be a short resolution of an abelian group G. A V-manifold
with coefficients in p can be defined exactly as in III §1 and the theory
enjoys all the analogous properties, In particular there is a universal

coefficient theorem,

Remark 6.1, Coefficients p is an example of killing, as des-
cribed in §4. To make the notation fit with §4, let V1 =Ve® F0 (V-
manifolds labelled by elements of Bo) and U1 =Ve Fl. The trans-
formation U1 X L(r, p) =~ V1 is given by ignoring the label on the first
factor. Then (V, p)-theory is the theory obtained from V1 by killing

simultaneously the elements {L(r, p)|r € B, 1.
Longer resolutions

The description of coefficients in resolutions of length =< 4 in
Chapter III is again an example of killing (made precise as in 6, 1 above),
To make this work for a general theory we need to regard L(bi’ p) XM
as a (V, p)-manifold for each V-manifold M and each link L(bi’ p). Now
each stratum of L(bi’ p) is a disc, so we can regard L(bi’ pP) XM as
a stratified set with each stratum a V-manifold, and the only possible
problem comes from 'restrictions on the normal bundle'. In general
this problem is solved by endowing L(bi’ P) with the universal restric-
tion, namely framings of each stratum which fit together in a standard
way (i. e. L(bi’ p) is an object in the theory of framed manifolds with
coefficients - stable homotopy with coefficients). For the 0-stratum there
is no problem (framing is equivalent to orientation). For the 1-stratum
we have to frame each 1-disc extending given framings near the ends.
Orientation considerations imply that this is possible but there is non-
uniqueness - there are two possible choices for each 1-disc. Finally
for the 2-stratum, the non-uniqueness of framings of circles implies
that the framing may not be possible, We now make some more precise

statements.
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| Definition 6. 2. Let S° denote the circle with the non-standard
framing. V is a good theory if there is a bordism D of s’ to zero
lin V suchthat M X D is a bordism of M X gl to zero for each

™] €V, (pt.).

Remarks 6,3, 1. For ring theories our definition of a good
jtheory coincides with Hilton's, see [4; 1. 9], For general theories Hilton's
definition is equivalent to insisting that 75 X §1 is cobordant to zero for
each V-mock bundle 7. This is in fact sufficient to prove Theorem

6. 4(1), but we will not give details,

2. If V is a good theory then we can complete the construction
of L(bz, p) - plug in the bordism D of st to zero wherever appropriate

(in most cases D = D2 and the construction coincides with the old one).
Functoriality

The best result we have, for a general theory, is the following:

Theorem 6,4. Coefficients in a short resolution of an abelian

group gives a notion of coefficients which is functorial

(1) for good theories

{2) on the category of direct sums of free abelian groups and odd torsion

groups,

Remarks 6,5, The universal coefficient sequence is natural

{and hence, usually, splits) in exactly the same cases,

Proof of 6.4. 1. Exactly the same proof as III §4, using
Remark 6. 3(2).

2. Step 1. Coefficients are always functorial on the category
»f free abelian groups.

where F is afree

s

This is seen as follows, Define ?2('1( ; F)
\belian group, by allowing no singularities in the representatives (i. e.
abellings only) and codimension 1 singularities only in the bordisms
this requires only the definition of 0-links, which, as seen earlier,
\lways holds). Now ?2(‘1( ; F) is the same as Qq( ) ® F by exactly the

irgument of III £4, but with all levels of singularities reduced one step.
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We leave the reader to check the details here; geometrically all that is

required is a construction (not unique) of 1-links, which we gave above,

Step 2. Coefticients are functorial for odd torsion groups.

The idea here is to use the fact that Sl has order two to complete
the construction of the 2-links for a 3-canonical resolution, At the final
stage we have Sl labelled by g € G and g has order t, t odd. We
have to plug in a bordism of gS to zero. Take —t—;—l coples of s'x i
framed so S is at both ends and glue all the copies of S together.
Finally glue on one copy of S X 1 by one end. This constructs the
required bordism. The new singularity is labelled by the relation

gt+tg+... +g (t times).

Step 3, Coefficients are functorial on the category of direct sums.
Let G=F ® G where F is free and G is an odd torsion
group, Define Qc'i( ; ) b~y using the two def1n1t10ns given akiove.
Precisely a generator of ©" is the union of a generator of Qq( ; Gl).
A 'bordism' is similarly a union of bordisms. Now let G'=F' & G'1

and h: G- G' a homomorphism. Then h splits as

F—2% » @

b A &

G —L1— G
since there is no non-trivial homomorphism G1 - F',

This means that we can define h[M] by simply relabelling and
we never meet the problem of relabelling an element with singularities
of too high a codimension. Similarly bordisms can be relabelled. Thus

" is functorial, That it is isomorphic to the correct group follows from

Steps 1 and 2. This completes the proof.
Products, Bockstein sequence and rings_ of coefficients

The rest of Chapter Il goes through with obvious changes in the
general case. The constructions are functorial under the same conditions

as Theorem 6, 4,
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V-Equivariant theories and
operations

In 81 of this chapter we describe a further extension of mock
bundles, to the equivariant case - the theory dual to equivariant bordism
and in §2 give a general construction which includes power operations
and characteristic classes. The remainder of the paper is concerned
with the case of Zz-operations on pl cobordism. In §3 we expound the
'expanded squares' (‘expanded' rather than the familiar 'reduced' because
of our indexing convention for cohomology) and in 84 we give the relation
with tom Dieck's operations [5]. 85 describes the characteristic classes
associated to Zz-block bundles and in §6 we give a result inspired by
Quillen [3] which relates the total square of a mock bundle with the
transfer of the euler class of its twisted normal bundle. This leads, in
some cases, to the familiar connection between characteristic classes
and squares. Finally in 87 we give an alternative definition of squares,
based on transversatility. This is like the 'internal' definition of the cup

product (see II end of §4).
1. EQUIVARIANT MOCK BUNDLES

Let G be a finite group and X a polyhedron. By a G-action on
X wemean a (pl) map G X X =+ X satisfying

(i) for all g, 8, ¢ G and x €X, gl(gzx) = (glgz)x.

(ii) if e € G is the identity then ex = x for all x € X,

If X, Y are G polyhedrathenamap f:X =Y is a G-map if
f commutes with the G-action. We then have the concept of equivariant
bordism of X by equivariantly mapping G-manifolds into X and we shov
below how to define equivariant cobordism via G- mock bundles.

Suppose now G acts on X = [KI Then we say G acts on K
provided for each 0 € K and g € G, go € K. The action is good if in

addition whenever go = o we have g/0=id
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Proposition 1. 1. Suppose G acts on X. Then there exists K

‘gsuch that [KI = X and there is induced a good action on K.

i

i Proof. 1t follows easily from definitions that X/G has a pl

1

structure so that the quotient map q : X =+ X/G is pl. Choose

{|L| = X/G, so that for each g € G the subpolyhedron q{x|gx =x}

fls a subcomplex of L. Then define o € K if and only if q(o) € L. then

}
i

jK is the desired complex,

A mock bundle £/K is a G-mock bundle if there is an action of
G on E(&) which induces an action on K. Let T%(K) denote the group
}:of G-cobordism classes of G-mock bundles over K. If the action on
i;E(E) is good (i.e. if gB, = b, implies g|8 = id.) then the subdivision
process can be carried through equivariantly simply by subdividing all

1blocks in an orbit isomorphically.

I It follows from Proposition 1. 1 and the subdivision construction

!
@that there is a G-homotopy functor Tcé on G-polyhedra defined by con-

sidering only good actions. In fact we have:

i Proposition 1,2, There is a natural isomorphism

6 : T4(X,/G) » T?}(X).

| Proof. Let [£/L] e TYX/G), with L as in the proof of 1. 1.
Then g*£ has a natural G-action and we can define [ £/L] = [q*£].
' is easily proved to be an isomorphism.
3 From 1. 2 it is easily seen that the work of II carries over to the
;equiva.riant case when the action is free, for example there are cup and
cap products and Thom and Poincare duality isomorphisms.
If U is a geometric theory then there is also a notion of equi-
variant U-bordism and equivariant U- mock bundles., We omit details.
We shall see in the next section that the case of a G-mock bundle
¢/K with the action in K not good is extremely interesting as the power

operations spring from consider such cases.
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2. THE GENERAL CONSTRUCTION AND THE POWER OPERATIONS

Let W be a free G-polyhedron and J a G-complex with fixed
point polyhedron F C |J| =X,
Let U be a geometric theory, We have the following commuta-

tive diagram of homomorphisms:

q
<l>1 U X e W)
b
qu
U%(J) » U4(F x W,/G) 2. 1)

S~ Uq+n(F)
Here <1>1(5) =61 x 1W) and G acts on X X W by the diagona

action, r* is restriction and 7, is composition with the trivial mock

!

bundle with fibre W /G, when this is defined, that is, when M X W/G
is a U-manifold for each U-manifold M, (e.g. if W/G is a U-manifold
and U is a ring theory).

The whole diagram is natural for subdivisions of G-bundles over
for G inclusions J0 CJ and W0 C W. Further <I>! depends only on
the free G-cobordism class of W,

There is a relative version got by replacing J, Q, and F by
(J, Jo)’ Q, Qo)’ and (F, Fo) respectively,

The construction of <I>0, <IJI can be made for more conventional

types of bundles, for example vector bundles, spherical fibrations.

Example 2.1, Let u/X be a G-vector bundle with G = Z2 and
let W be the sphere s" with antipodal action, Then u[F =u ® w
where G acts trivially on the fibres of u and antipodally in the fibres
i —_ %
of u. It easily follows that tbo(u) = n’{(uo) ® n’z*(ln) + nl(ul) where ln
is the canonical line bundle on Prl and ™ and m, are the obvious

projections.
Power operations

Now let Zr denote the symmetric group on r symbols and
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El

suppose given a non-trivial homomorphism u: G- Zr' Define

]
;‘is ! Zq(K) - Z?.;(Kr), where Z denotes isomorphism classes of U-mock
‘ bundles,

by s(&§)=&X .., X ¢ with G action given by permuting factors via g,
';s commutes with subdivision of K and can be seen to define external

Jpower operations

JREES PRSI b PG o
Pl(u, W) :U'X) U7 (X XGW)

P (1, W) : U3 vV (x x w/G)

by Pi(u, W) = <I>i ° s, When T is defined (see above) then we have

l‘mternal operations P, (y, W) =.<I>' o s5:U0%x) = Uqr+n(X).
3. THE EXPANDED SQUARES

Now restrict attention to ordinary pl cobordism (denoted
T*(, ) as usual) and, in the construction of the end of the last section,
let G= Z2 = 22 and let W= Sn, the pl n-sphere with antipodal action.

We obtain the external and internal expanded squares:

n

Tx x x x_ s%

Z
2
n
Sq, l

> T29(x x P

Tdx

—

n
0

Sq

n T2q+n

5q, (X)

for n=0, 1, 2, ...

Remark 3,1, The name 'expanded square' gains more credence

‘ 2r+
from the observation that we can choose representatives §£ r+n for

a7 TTE7] so that

2r 2r+1

| E(’T) C E( 2rin

)C ... CE(£ ) <

ces g

2r

and from definitions we have [£7]=[¢"]u[£'). A similar remark
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applies to Sq?[&], i=0, L

The following lemmia is easily proved.

n

Lemma 3.2. (a) Sq°[&]=[£]u [
] s

0
(b)  i*Sq)[£]=|&] X [£], where i : X X X X pt. »XXXX

the inclusion induced by the inclusion of a point in s™,
(¢) Let u/K be ablock bundle and let tu be its (canonical)

s

Z
2

Thom class then Sq?(tu) is the (canonical) Thom class of

E(u) X E(u) ><Z2 s"-x xX ><Z2 s™,

(@ Sq?+m[Mm] =[M XM x

7 Sn] where M is a closed mani-
2
fold here regarded as an m-mock bundle over a point.

n n+r

Proposition 3. 3. Sql, ng1 and Sq, are homomorphisms,

Proof, 1t is sufficient to show Sqi1 is a homomorphism, Abusin

the notation we have

Sa)(£ + ) = Sq; (&) + Sa[(m) + (5% n + 7 x ) x§")/Z,.

The last factor is a composition (of mock bundles)

5><nxsn-»Kxszn-»(Kxszn)/zz,

but the 0-mock bundle K X K x S" - (K X K X Sn)/Z2 gives the class
0eT’ (KX K X s“)/zz). The result follows.

The following is immediate from definitions.

Proposition 3.4, Let i:((K X L) x (Kx L) x §"/z,

-»(K><K><s“)/z2><(L><L><S“)/Z2

. N
bendefmed by 1 [xo, X, yo;1 v, z] = ([xo, Yy z], [xl, Vo z]). Then
Sq [£ % n]=i*(sq][£] x Sq,[n]) for any £, .

Corollary 3. 5. Sqi1 and ng are ring homomorphisms.

Proof, 1t is sufficient to show that Squ1 is a ring homomorphism,

but from the formula in 3. 4 and the commutative diagram
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i
(K X K) X (K X K) x Sn)/Z2 - (KXKX Sn)/Z2 X (K><K><Sn)/Z2

AXAX] A
i (K X K X s“)/z2

we get Sq, RGDE Sq, M€l v Sq I ).
‘ The relation between Sq EU Sq 7 and Sq (E U 1) is illuminated
by the following.

Corollary 3. 6, There is a commutative diagram

n+r+s

]

XXPnXPff XXP

~NT

> X -

( n+r r nt+s_ s

£ U Sq,

n) ~——— E(Sq

(¢ um)

in which the square is a pull back.
i

Proof. This follows from 3.5 and the diagram

E(Salt x 8q7n) ~——E(Sa} T£uU Sq7 °n) =—E(Sq)¢ U Sq’n)
+ ! | \L 0 0

XXPn;(XXPn% + XXPnXanXXPn
XXX - X‘Z”’/“/

A
;n which each square is a pull back,

Proposition 3, 7. j*SqESq;n[g] = sq;nsqg[g], where
i where
. X X i i j =
:Q X Pn X Pm -Q Pm Prl is given by j(x, y, z) = (X, y, 2z).

Proof. This follows from commutativity in

AXA
@xP)xP —> (@xQxs"/z,x @xQxs"/z,xs" xsV)z,

Ilslj ||slk
AXA

@QxP )xP ——>(@QxQxs™)z,x @xQxs")z,xs"xs"z,

103



where k shuffles the spheres and each A is a suitable diagonal map.
4, RELATIONS WITH TOM DIECK'S OPERATIONS

In [5] tom Dieck defines operations in the smooth case analogous
to our Sq0 and Sql. That the definitions agree in the smooth case
follows from 3.2.c. We now look at the relationship between our internal
operation Sq.} and tom Dieck's internal operation. By virtue of the Thon

isomorphism, see e.g. [1], one readily proves

T*(X X Pn) = T*(X) ® T*(Pn)

and
TP ) = T*[x]Ax" 1)
where x is the euler class of the canonical line bundle ln/Prl and by

direct construction we have P, Pn- I Pn, the usual inclusion, and the

. 1
projection of x' is the inclusion Pn—i nd Pn. Thus

n,.q, _ S q+i.g. i
sap(eh) = TR e x
. i=0
i N\
and the Rq+1 are tom Dieck's internal operations, with a change of sign

in the indexing.

n .
Proposition 4. 1. Sq?+q(£) = ) [Pn_i]R_q_l‘éq .
’ i=0
Proof. Consider
= P
T*(X) ® T*(Pn) - T*(X X Pn) -+ T*(X).

Then p, x has projection X X P . =X and therefore P, x = [Pn_i]. L
Further if £/X has projection P! E(f) =X then ¢® x' has projec-
tion E(_E) X Pn—i - X X Pn and composing with X X Pn - X we see that
P, E® x = [Pn_i]é. The result follows.

Now let p: T*(-) = H*(-; Z2) be the_ Steenrod map (the identity
on representatives, see IV 3.1(3)). Let Sq1 be the usual Steenrod square

(with a change of sign),
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Proposition 4. 2. (i) uSql' (&) = Sqlu(é), where on the right we
have the usual Steenrod operation,

(i)  pSq) (&) = HR'(2).

Proof. (i) follows from the axiomatic description of Sq1 and

from (ii), which comes from the fact that
u[Pn_i] =0 unless n=1i
5. CHARACTERISTIC CLASSES

In this section we present a special case of the construction of §1.
Let u/K be a block bundle with involution f : E(u) = E(u) satisfying
tp lo = p_lo and |K| = {x:f(x) =x]. Recall that the inclusion
X = |K| C E(u) is the projection of the Thom class tu and by virtue of
the involution we have [tu] € T, S(E(u), E(u), G = Z,. Now we may

G
apply the construction of §1 to get

W (W) =& [tu] €T 5(x x P),

—n
and
! - n-s
Wn_s(u) = <b! [tu] €e T °(X).
! ! !
The classes W_s(u), W_s+1(u), ceey W_s+n(u), ... are the Z2 charac-

teristic clagses of (u, f).

Denote by u® I the block bundle E(u) X, s = x x P. In
2

the case that u is a vector bundle with antipodal action then u ® ln

coincides with the usual tensor product with the canonical line bundle,

From definitions we have:

Proposition 5,1, W _(u) is the euler class e(u ® 1 ), and
1 s —n n? ——
W_s(u ) = e(u).

1
To get some geometric insight into the meaning of the Wl'{(u)

zonsider the diagram
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EW (W)- - - -~ -~ - -~ > XXP_
i i
X><Prl C (E(w) X S)/22
l .
1
X < E(u)/Z

where p is the projection of <I>1(tu) after subdivision so that

X X Prl C (E(u) x Sn)/Z2 appears as a subcomplex. From the diagram
we see that we may regard E(_Vgn(u)), after dividing out the z, action,
as f'l(X) where f is an equivariant approximation to XX s" = XCE(u)
which is transverse to X. Such a map f may be produced by using the
pl transversatility theorem and an induction over the cells of K X Sn,
where " has a suitable equivariant cell structure. This gives an alter-
native definition of the characteristic classes.

From the alternative definition we have

Proposition 5,2. Let €°/K be the trivial block bundle then
!
W;(es) is the class of the projection K X Pr - K.

Now suppose vr+1/K and us/K are block bundles with involution
r+l1 Er+s+1

and that there is an equivariant isomorphism C ey where

€ is the trivial block bundle with standard involution and the involution on
+

ey 1 is induced from u° ® vr+1 = p‘";le(u). Then we have

K ¥ Sr+s c E(Er+s+1)

into E(u) we get an equivariant transverse map

and composing isomorphisms and the projection

f:Kxs S >E®W with £ 1K|=PW),

where P(v) denotes the mock bundle E(\'I)/Z2 -+ K. We have then:

]
Proposition 5. 3, In the above situation, Wi.(us) is the class of
P(v) = |K].

6. SQUARES AND EULER CLASSES

The purpose of this section is to prove Theorem 6. 1 below and
derive consequences. The result was inspired by Theorem 3. 12 of
Quillen [3].
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Let u/X be a pl bundle with fibre some euclidean space, and
suppose A : X X Prl - (X X X X Sn)/Z2 is given by A(x, [y])=[(x,x,y)].
Then there is a bundle inclusion u X Prl = Ax(u X u X Sn/Zz). Define
u+/X X Prl to be the complementary block bundle. The existence and
uniqueness of ut follows from 5.1 of [4].

Now suppose given a mock bundle gq/K with [KI =X and
E, CE, where u isa pl bundle with fibre RY"™ and for each
o €K, p'El(fr) = p;l(fr) n EE and further suppose given a pl normal
bundle V/EE for the inclusion so that p;lpél((ar) = p;l(a) n p;l(E E)' In

this situation we say ¢ is in u with normal bundle v,

Theorem 6.1, Suppose &3/X is in u3™™ with normal bundle

v™. Then e(u"sq’(§) = pe(v'), where p: E,XP =XXP Is
given by p(x, y) = (pg(x), y)-

We need the following generalisation of the clean intersection

formula, 3.3 of [3].

Lemma 6,2, Suppose given a block bundle w/X and isomor-

phism W GBWI/YEWIY, Y C X, Then

i, (0 vew)) =i (§) for &eTI(X)
where

is the diagram of inclusion, and E(u)' denotes the pair (E(u), E(u)).

Proof. Consider the diagram of inclusions
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Since j1 =1 l0 we have j’{j' (&) = l’(‘;l*j, (£). Now apply (II; 2. 4) to the

square,

E(Wo bw ) —————» E(w)'

T T]-
Y X

Y

and get l’(*)l 1 i0 i*(£). Again apply (I1; 2. 4) to the square
[

l
] 1  — ]
E(Wo) ‘ —fE(wo ®W1)
T io . T lo
Y » E(w_ )

and get i i*i i*(£), whichis i  (i*(§) ve(w )) by (II; 2. 6).
1,707, 1, 0

Proof of 6,1, Consider the diagram

A
£ n
x » (E,XE,XS
EE Pn ( £ £ )/Z2
ni ni'
AV n
[} o X X '
E(E, X P ) E(E, X E X§)'/Z,
Tc Tc‘
Au n
t - X X 1
E(E, *.P ) E(E X E XS")'/Z,
U j‘ U ]‘l
a n
XXP X > (XXX X8§)/z,

where ¢, ¢' are collapsing maps. Let
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p:E,XP =XxXP_ and p':(E xE,X s“)/zz->(x><x><s“)/z2

£ £

be the projections. Now apply 6, 2 to the top square to get

Arir1=1, (A3 v ev) =1 (evh) .

Now from definitions i' p, = c*i' and so we have

. . +
axil = jpev) .... (1)

!
Now apply 6. 2 to the element p’(1) and the bottom square to get

™

axjipy (1) =5, (Sa0(H) Ue@) ... (@),

since from definitions A;p; (1) = Sq?(&). Since jip; = c'*i; and
Avc = ¢'Au we have from (1) and (2) that j!p! e(vh) = j1 (ng(é) Ue(u+))
and hence the result since j, is the Thom isomorphism.

Suppose now that u, v are vector bundles. Then u, v have
underlying pl! structure (see [2]), and it is easy to see that wW=ue ln
and v =v® ln (see for example [1; p. 138]). From 5.1 we now have

the following corollary.

Corollary 6,3. If £ is in u with normal bundle v and u, v

admit vector bundle structures then

W (WSq)(5) = p, W, (V).

Corollary 6,4, For pl! bundle u/x with (canonical) Thom

class tu, Sq';(tu) =1, (u+), where i :X X Prl -+ X X E(u) is the

inclusion.

Proof, Apply 6. 2 after replacing EE - Eu =X by
X CE 1_(1 E .
u u

7. THE TRANSVERSALITY DEFINITION OF THE EXPANDED SQUARE

The previous section raises several interesting questions, e. g.
the relation between u' and u®1l incase u isa pl bundle with

Zz-action. This section clarifies the gituation, see e.g. Proposition 7. 2
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below, This is achieved by a further definition of Sq'(‘)1 as a special case
of a general construction which we now describe.

Let c: )~( =+ X be an r-fold covering map. We define a function
P_: Tx) » T"4(X) as follows. Let w, /X be the vector bundle with
fibre at x € X the vector space with basis set c_l(x). Now let
[£] € TYX) then for some large N we may assume £ is in the trivial
bundle eN with normal bundle v, say. Define Ec in €® w, by
E(Ec) ={y®z:y ek, clz) = pE(y) }. Observe that £, =c c*t Now
define a (vector) bundle vi/E(&c) by taking the fibre over y ® z to be
the subspace of the fibre of € ® W, at pE(y) generaied by vectors a ®b,
with c(b) = pE(y) and b # z. Further define f : E(vc) - E(e® wc) by
fly ® z, Eai ® bi) =y®z+ Eai ® bi' Note that the image of f is a
closed subspace of E(e ® wc). Now suppose ¢ has base K, so IKI =X,
Over a vertex of K, E(vt) falls into r-distinct pieces and under f these
pieces intersect in the fibre of € ® W, over the vertex, Shift f so
the r-pieces and all the intersections are pairwise transverse. This can
be done using (II; 4. 1). The total intersection is the block of PC(EC)
over the vertex. This is the start of an inductive process which we call
'making f self-transverse'. The resulting self-intersection is the total
space of PC(E). The self-intersection should not be confused with the
result of intersecting f with itself, which is got by taking two copies of
f and intersecting one with the other which would give the cup product
[f]u [f] where f is regarded as a mock bundle over E(e ® W ).

It is not hard to show that the operation is well defined and functori-
al for bundle maps, and for the trivial r-fold cover Pc is just the
r-fold product (see 11 end of §4).

The description of PC(E) considerably simplifies in case
pE : E, +»X is an embedding. In this case one can inductively make
p: E(c' c*f) = X self transverse. As an example consider the double

cover c: 8" ~P and PP P the inclusion so that [£] eT_l(Pn)
is the generator. Then PC(E) = ( since Sn_1 - Pn—l nd Pn can be shifted

to have empty self intersection.

Theorem 7.1, Let c:S X X~ Pn X X be the double cover,

then ngﬁ =P (1, x 9.
n
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Proof, Consider £ in eN. Then the quotient map
£: (B, % (X X ROMX xRY) x E)) Sy ((x x RMN x (xxRMN)x " /2
is self transverse with self intersection l(EE X E€ X Sn)/Zz, which gives
Sqr;E after restriction to X X Pn' But the restriction of the domain of
X §). The

"

1
f to X X Prl is E(vc) and its self intersection is Pc(lp
n
result follows from the commutativity of the subdivision with the opera-
tion of making self transverse,

We shall use the new definition to prove:

Proposition 7. 2. Suppose that u is a block bundle with Zz—action.

Then Sq"tu =i W (u), where i: XX P_=E_X P_ is the inclusion.
— "y !=n — n u n ————~

Proof, It follows from 7. 1 that Sqro‘tu can be obtained by making
X X 8" - E(u) x P self transverse. On the other hand e(u ® ln) is
obtained by making X X LI S% -+ x x P - E(u® ln) self transverse,
Both E(u) X Prl and Eu® ln) are quotients of E(u) X s" under a (free)
Z,-action, by definition. Inductively make X X S"=E@) x s equi-
variantly (with respect to the diagonal action on the right) transverse to
X x s Suppose the result is f: X X st - E(u) X s”. Then
X X s“)/z2 =X X P_ is the projection of (u®1 ) =W (). On
the other hand X x S" L E() X S" = E(u) X Prl is self transverse and

restricting to the intersection gives f' again,

Corollary 7. 3. If u is a block bundle which admits a Z -action

then

(i) _Vgn(u) is independent of the choice of Zz—action, and

(i) if u reduces toa pl! bundle then

e ) =e®1 ) =W (u),

Proof. (i) is immediate and (ii) follows from 6,4 and 7, 2,
cP and let

-1 m

XP C X i : =
P CP_XP_ bedefinedby {(x,y) .inyi 0},

Let Xm be the class of the inclusion Pm

- C
H(m-1, n) Pm-l
see e.g. [1]p. 164,
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Corollary 7, 4. ng(xm) is the class of the inclusion

H(n, m)C P XP_,
n m

Proof, Xm is essentially the Thom class tl . So
m-1
n

Sqo(Xm) =i, (lm_1 ® ln) but this is H(m-1, n) C Pm X Prl by direct

construction, see Theorem 6. 6 of [1], p. 164,

Definition 7.5. For any block, vector or pl bundle u define
. — q v X
_Vzn(u) by 1!En(u) Sqo(tu), where i:X Pn-' Eu X Pn'

In view of 7, 2 no confusion can arise from this definition,
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VI-Sheaves

In this chapter we extend the treatment of coefficients in Chapter
1Y to cover sheaves of abelian groups, We work always with pl co-
bordism but everything that we say can be extended to an arbitrary theory
under the conditions of IV 6, 4, 8§84 and 5 in fact extend unconditionally.
The general definition of sheaves of coefficients does not have all the best
properties one would hope for and we will explain where the difficulties
lie at the start of §4,

In §1 we recall the basic properties of stacks and sheaves and in
§2 we define the theory of mock bundles with coefficients in a stack, The
definition is functorial on the category of all stacks of abelian groups,
The main theorem asserts that, if the stack is 'nice’, then there is a
spectral sequence expressing the relation between simplicial cohomology
and cobordism with coefficients in the stack. In §3 cobordism with co-
efficients in a sheaf is defined by means of a simplicial analogue of the
Cech procedure. In §4 we discuss an extension of the methods used in
the previous sections and give an example of 'Poincaré duality’ between
bordism and cobordism with coefficients in the sheaf of local homology
of a Zn— manifold. Finally in §5 we extend the methods further and give
examples which suggest the existence of a bordism version of the Zeeman

duality spectral sequence [1],
1. STACKS

A stack of abelian groups over a cell complex K is a covariant
functor 7 : K- @b, where @b denotes the category of abelian groups
and K denotes the category with objects the cells of K and morphisms
the face inclusions. A homomorphism between stacks, 7/K, 7'/K, is a
natural transformation of functors ¢ : 7= 7', The category of stacks

over K will be denoted by § /K or simply §, If 7 is a stack over K

113



and K' < K, the subdivision of 7 over K' is the stack 7'/K' such that
g €K,
2

T'(0") = 7(0)

s 'r'(o'l < cr;_) = 'r(ol < 02); o', @, 0;_ €K', 0, 0

1!
0'2 - 02. If 7/K is a stack, 7 X I will denote the stack
over the cell complex K X I, such that: (7 X I)(o X I) = (7 X 1)(0) = 7(0)
for every 0 € K; (7 X I)(o1 X 1< o, X1) = (7 ><I)(01 < 02) =
‘r(O1 < 02), 9,0, € K. if 7/K is a stack, and J C K, the restriction
J is defined to be the stack over J, such that (TIJ)(O) = 71(0),
- < = <

o€J; (1lMe < o)=1(0 < 0), 0,0 €],

Let X be a polyhedron and ¥ a presheaf of abelian groups over
X, If K is a cell complex, |K| = X, F induces a stack, FK/K’ by:
F(0) =F(st(0, K)), Fp(o < 0)=F(st(o, K) 2 st(o,, K)), o, 0,

K
We briefly recall the notion of simplicial cochomology with coef-

0'Co 0 Co,
1 1

T

o €k,
2

ficients in a stack and its relation with Cech cohomology., Let 7/K be
a stack over the oriented simplicial complex K. A (-p)-cochain, fp,
with coefficients in 7, is a map which assigns to each p-simplex

P e K, an element of T(op); (-p)-cochains form an abelian group by
coordinate addition, C—p(K, 7), There is a coboundary homomorphism;
6P.cPK, 1~ C_p'l(K, 1), given by

5pfp(0p+1) = 20p+1[0: op+1]-r(0< op+l)fp(0). {cPg, 7), 6P) isa
o=
chain complex and its cohomology is by definition Hp(K, T).

If ¥F/X is a sheaf and FK the induced stack over K, let ‘UK
denote the covering of X formed by the stars of the vertices of K. The
nerve of ‘UK is known to be equa=1 to K and this fact induces a canonical
identification {Cp(K, FK), P - {(‘fp(‘UK, ¥), 5} of chain complexes;
¥ stands for 'éech'. Therefore, because the coverings by stars are a

cofinal system in the system of all coverings of X, we get

=lim#P@, F) = BPX; F).
-9

: p
lim B (K; F_)
=K K
2, COBORDISM WITH COEFFICIENTS IN A STACK

Throughout this section we shall be using the same terminology as
in Chapter III below 3, 5, Thus a G-cycle or G-manifold has singularities

in codimension 1 at most, while a G-bordism is allowed to have singulari-

ties up to codimension 2,
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Let 7 be a stack of abelian groups over an oriented cell complex
K. A (7, q)-cocycle [cobordism] t1/K consists of a projection
pE tE - |K| such that

(a) for each o €K, p—l(o) is the interior of a (7(0), q+dim o)~
manifold [bordism], £(0)

_— . -1
(b) for each o €K, E(0)= O_i< o [0i : o]'r(oi< O)pE (oi), where

r(oi < o)p'El(oi) is the image of the 'r(oi)-manifold [bordism] under the
relabelling morphism -r(oi < 0); [oi : 0] is the incidence number and its
effect is a change of orientation iff [oi ;o] =-1,

The manifold [bordism] £(0) = £{0) - 3£(0) is called the block
wver o; (7, q)-cocycles [cobordisms] £ 7 over K are isomorphic,
written £ = g, if there is a (pl!) homeomorphism h : .EE - E77 such
that h| £(0) is an isomorphism of 7(0)-manifolds [bordisms] between
{o) and 7n(0), Suppose given §q/K and L C K, then the restriction
¢|L. is defined in the obvious way and it is a (t|L, q)-cocycle [cobordism]
wer L, A (1, g)-cocycle [cobordism] over (K, L) (L € K) is a (1, q)-
tocycle [cobordism] over K, which is empty over L; -£ is the cocycle
cobordism) obtained from ¢ by reversing the orientation in each block,
If !;'0 and 51 are (7, q)-cocycles over (K, L), then !;'0 is cobordant to
El if there exists a (T X1, q)-cobordism 5/(KXI, L X 1) such that
1K x {i) =)' (= 0, 1). Cobordism is an equivalence relation
ind we define Qq(K, L; 7) to be the set of cobordism classes of (7, q)-
cocycles over (K, L); Qq(K, L, 7) is an abelian group under the opera-

ion of disjoint union; we call it the q-th oriented (pl) cobordism group

f (K, L) with coefficients in 7, If 7'< T then there exists an 'amalga-
mation' homomorphism am : Qq(K', T - Qq(K, T) like in the case of
rrdinary mock bundles (see Chapter II), In the proof of the subdivision
‘heorem for cobordism without coefficients, Chapter II 2, 1, all the
jeometric constructions are carried out cellwise, Therefore the proof

‘eadily adapts to the present case and we deduce

Proposition 2,1, X 7' < 7 then am: Qq(K', T') =~ Qq(K, T)

S an isomorphism of abelian groups,

Let ¢ : T - T, be a homomorphism of stacks over K, There is

in induced homomorphism ¢, : Q*(K; 'rl) - O*(K, 72) defined blockwise
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by relabeliing; more precisely, if £/K is a 'rl—cocycle [cobordism] and
o € K, we relabel the block £(0) by means of ¢(0) : 'rl(o) - 12(0)
(like in WMI), If ¢£'(0) is the resulting polyhedron, then the union

£ =~—t'(0) is a 7,-cocycle [cobordism]|, All compatibility conditions
oceK
are ensured by ¢ : T - T, being a stack-homomorphism, Therefore

we have the following:

Proposition 2.2. There is a functor Q*(K, -) : § = @b, which

assigns to each 7 € § the abelian group £*(K; 7) and to each morphism

¢ € § the (graded) abelian-group homomorphism ¢,

A linked stack of resolutions over a cell complex K consists of

a covariant functor p K- e (see IT1 §3 for the definition of @), A
linked stack of resolutions p is said to be p-canonical if p(o) is a p-
canonical linked resolution for each o € K (in the sense of 1II §3),

If 7/K is a stack of abelian groups and p/K is a linked stack of
resolutions such that, for each o0 ¢ K, p(0) is a resolution of 7(0), then
we say that 7 is represented by p. We denote §'/K the full sub-
category of 8/K consisting of all stacks which are representable by
p-canonical stacks for each p=1, 2, 3, The objects of § will also be
called nice stacks,

If 7/K is a stack of abelian groups, there is an induced graded

stack on K, written {Qg/K] and given by

Qg(o) = Qq(point; 7(0))
\Qg(o1 < 02) = 'r(ol < 02)* .

We aim to prove the following

Theorem 2.3, If 7 €§', there is a spectral sequence, E(T),

Tunrning

E.  =HPK; o= axK; 7).
p,q T

Moreover the spectral sequence is natural on §',

In order to prove the theorem we need some definitions and lemma
Let p be a linked stack over K. A (p, q)-mock bundle Eq over
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K, L) consists of a projection Py * EE - |K| such that
(a) for each 0 €K, p’El(o) is the interior of a (p(0), q+dim 0)-
nanifold, £(0);

(b) for each o €K, £(0) =~~——r [0i : o]p(oi< 0)p-£1(0i) (with
g.< 0
he usual meaning of the notations);

(© P L) =9
I'wo (p, q)-mock bundles 50, 51/(1(, I.) are cobordant if thgre exists a
0, q)-mock bundle 1/(KXI, L X I)such that 77|1<i = (-1)‘5i i=o0, 1
The (g-th)-cobordism group of (K, L) with coefficients p, written

zq(-; p), is constructed from (p, q)-mock bundles in the usual fashion,
Thus the main difference between the theory of (7, q)-cocycles and

he theory of (p; q)-mock bundles is that the former allows the cobor-

fisms to have deeper singularities than the cocycles while the latter is

he natural extension to the case of local coefficients of an ordinary

nock-bundle theory,

Lemma 2,4, There exists a coboundary homomorphism

2. o%(L; p) - Qq'l(K, L; p) and a long exact sequence

f 64
g
. =%k, L; p) = o%(k; p) = 2%(L; p) -

there g is induced by (K, L) = (K, #) and f is 'restriction to L',

Proof, Definition of 6%, 1t can be roughly described as "pull
ack onto the boundary of a regular neighbourhood of L in K'. Suppose
L full in K. Let J(3) be the 3-nhd. of L in K and J its frontier;

r: J =L the pseudo-radial retraction, # = #|J. If ¢ is a (p, q)-mock
undle over L, form the pull back #*(£), which is a g-mock bundle over

f anda (q - 1)-mock bundle over (K, L). If £*(0) is the block of #*(&£)
ver o, then £*(0) comes from the block over #(J(3) n o), denoted

(0); therefore it has a structure of p(#(0))-manifold and it is made

nto a p(0)-manifold by means of the stack homomorphism (6(#(0)< 0). Sothe
esulting object 7 £)/K is a (p, q-1)-mock bundle which is empty over

» The assignment [£] = [7*(£)/K] gives a well defined morphism

4. g%y » ¥ YK, L). 1 L is not full, one first subdivides bary-

entrically once and then amalgamates.
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Exactness is proved geometrically by mock-bundle arguments,
which are all contained in Chapter II. The only remark to make is the

following,
Suppose K= 0 and £ is a (p, q)-mock bundle defined on

J=0- 01, o face of 0, Then p gives morphisms going from the
resolutions attached to the simplexes of J to the resolutions attached

to o, Therefore, if ¢ is extended over o by the pull back construction
the resulting block £(0) has a natural structure of p(0)- manifold.

We remark that the coboundary homomorphism 63 can be defined
also for the theory *(K, L; 7) (7 € §/K) exactly in the same way as in
the above proof, Therefore there is, for the theory Q*(K, L; 7), a long
sequence analogous to that of Lemma 2,4, However, although it is
immediately checked that the sequence has order two, there is no reason
to suppose that it is exact, The argument which is used to prove Lemma
2, 4 fails because in *(K, L; 7) two cobordisms having the same ends
cannot be glued together to give a cocycle,

Given a linked stack of resolutions p/K there is an associated
graded stack Qg € & defined like Qc_lr above (7 € §), We then have the

following:

Lemma 2.5, If p is a linked stack of resolutions there exists

a spectral sequence E(p) running

HP(K; ﬂg) = Q*(K; p).

Proof. By Lemma 2, 4, for each p=20, 1, .., we have the
exact 'p-sequence’
Q—p-q+1 ) £ q P-atl ) ! Q—p—q+1 )
[ K, K ; - K ; ind K ;
A ( o Kpo1i P ( o P ( p-1 P
-p-q .
-Q K,K .;p=...
Ky o1 P)

where Kp is the p-skeleton of K. The theory of exact couples yields
E ; al :

P q p,4° b, 4

q fixed] is isomorphic to {CT(K; 27?), 6! defined in Section 1, More

a spectral sequence E(p) in which the chain complex {

precisely an isomorphism h : ! - Cp(K; Qg) is given as follows,

1 -— p q - ’ -p q .
E = K K p). Le € K , K yP) Then
p,q ( p, p 1’ ) t [E] ( P P 1 ) E
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as a block £(0) for each p-simplex o € Kp and £(0) is a closed
i(0), -q)-manifold, because £ is empty over Kp-l' Therefore £(0)

etermines an element [5(0)]p € Qg(o). We associate to [£] a p-cochain
)

1] with coefficients Qg by setting

fFE](O) = [5(0)]p for each p-simplex o € K,
Lis readily checked that the correspondence [£] = fFE] defines the iso-
iorphism h, Moreover the required convergence conditions hold and
lerefore Em is the bigraded module associated to the filtration of

¥(K: p) defined by
FoQx(K; p) = Ker[Q*(K; p) ~ oK, ;P
he lemma follows,

Proof of Theorem 2.3, For each i=1, 2, 3, let Ps be an i-
anonical linked stack representing a given 7 € §',
There is a commutative diagram of degree-zero homomorphisms:

t
Q*(K; p) L > QX (K; p,)
t\ /
1,3 2,3
Q*(K; p,)

1 which ti . is the 'relabelling' map on cocycles, It is easy to see that
s
commutes with the coboundary operation and therefore there is an

duced commutative diagram of spectral-sequence homomorphisms

t*

E(,) = E(p,)
t*\ /*
1,3 2,3

E(p,)

n the E°-term t’i“ j is the homomorphism
b
L]

;o) - BPa )
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relabel
induced by the change of coefficients Qg e

i
to be an isomorphism from the theory of coefficients in the constant case

Qg which we know

Then, by the usual spectral-sequence argunient, t;‘,]. is an iso-
morghism for all (i, j): 1 =i< j =3, Nowthere is a homomorphism
a : x(K; T) = Q*(K; p}) given by the relabelling map on the cocycles.
In order to prove the theorem we only need to show that « is aniso-

morthism,

1. o is an epimorphism. There isa commutative diagram

——-——-»-QqKP

\/

where 6 is also a relabelling map, Therefore, since t] , is epi, so

is o,

2. «a is a monomorphism, Let [£] € Ker a, {t follows from

the definitions that £(/K is also a (p , @)-mock bundle, Therefore it
determines a class [5] which is mapped to zero by t, " Because

t2 ) is a monomorphlsm there exists a (p q)- (‘()bOI‘dlbIn Nt~

But 7 is also a (7, q)-cobordism. Therefore «a is mono,
The theorem follows.

Corollary 2,6, If 7/K is a constant stack (i.e, 7(0) =G for
each o €K), then ©*(K; 7) coincides with 2*(K; G) as defined in II 3.

Proof. Since @*(K; G) is a cohomology theory, there is a

spectral sequence E(G) running
HP(K, Q*(point, G)) > Q*(K; G).

There is a natural transformation of cohomology theories
t: Q*(K; G) = Q*(K; 7)

given by relabelling, The induced homomorphism of spectral sequences
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E(G) = E(7) is an isomorphism on the E’-term because Q’_‘;:Q*(point, G).
Therefore the corollary follows from the "'mapping theorem

‘between spectral sequences’,

Corollary 2,7, If 7 ¢ 8" and we take the theory Q*(K) to be
H*(K, Z) (= simplicial cohomology with Z-coefficients), then Q*(K, 7)

coincides with the usual definition of simplicial cohomology with co-

efficients in T (see Section 1),

Proof. H*(K; Z) is the mock-bundle theory whose blocks are
criented pseudomanifolds. Since a G-pseudomanifold of dimension
greater than zero is bordant to ¢ for every group G, we see that the
E'-term of the spectral sequence E(7) reduces to the cochain complex

C*(K, 1) considered in Section 1 and the spectral sequence collapses.
3. COBORDISM WITH COEFFICIENTS IN A (PRE)-SHEAF

We are now ready to give a notion of cobordism with coefficients
in a presheaf, using an analogue of the Cech procedure, Let X be a
polyhedron and F/X a presheaf of abelian groups. If K is a triangula-
tion of X, then, by the previous section, we have a graded group
{9, Fro) 1, k is the induced stack on K. Suppose K'< K.
We define a homomorphism ap g Qq(K, FK) - Qq(K', FK,)
let Eq/K be an (FK, q)-mock b;mdle. Subdivide £ over K' and get

" /K' such that £"(0') is an FK(O)—manifold for o' C o, The inclusion

where F
as follows:

st(o', K') C st(o, K) gives a restriction homomorphism

Py or ¢ Fyel0) = Fie (

£'(0"), by applying this homomorphism, i.e. £'(0') = F

0') and we make £"(0') into an FK,(O')—manifold,

o, o(£"(0"). When
ill the blocks of £" have been relabelled by means of the restriction
tfomomorphisms, one takes care of the orientations in the blocks, so that
the incidence numbers are preserved, The functoriality of the presheaf

F ensures that the final object is an (FK" q)-mock bundle ¢'/K', called

in F-subdivision of ¢ over K'. Two F-subdivisions £, &' of ¢ over

K' are cobordant by the same construction appliedto K X I and K' X I

modulo the ends, Therefore we have a well defined homomorphism
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. oK, FK)-»Qq(K', F..)

%k, K’ K'

aK’ K- “] = H']
The collection of groups and homomorphisms {Qq(K, FK), ap g I,

indexed by the directed set of all triangulations of X, is a direct system

and we define the gq-th (pl) cobordism group of X with coefficients in F

to be the graded group:

2, ) =1im {0k, F ]

)’ a 1
K K" “K,K

We now recall that a sheaf F/X is locally constant if there is an
open covering ¢ = {U]} of X, suchthat, if U €@ and x € U then

F(U) =lim {F(V)] where V varies over the open neighbourhoods of x.

it then follows that, if K is a sufficiently small triangulation of X, i.e,
the associated star-covering is a refinement of @, the cohomology of K
?ith coefficients in the stack FK coincides with the éech—cohomology
H*(X; FK) and the cobordism of K with coefficients in FK coincides
with @*(X; F) by 2.1, We call such an FK/K a limit stack for F/X,
We say that a locally constant sheaf ¥/X is nice if it has a limit stack
which is nice in the sense of Section 2,

As in the case of stacks, to each sheaf F /X there is associated
a graded sheaf {Q%,/X] defined by Q%,(U) = 9%(point; F(U)),
Q%,(U DV)=F@UDV),;U, V opensets of X. If F/X is locally con-
stant, then Q%, /X is also locally constant,

We have the following analogue of Theorem 2. 3,

Theorem 3,1. On the category of nice sheaves there is a natural

spectral sequence running

AP(x; Q%)ﬁ Q*(X; F).

The proof is the same ag that of 2, 3, using limit stacks,
A direct consequence of the 'mapping theorem between spectral

sequences' is the following comparison theorem

Proposition 3, 2. Let F*/X be a nice sheaf, If h : T*(-)=*S8*(-)
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is a natural transformation of cohomology theories, inducing an iso-

morphism of the corresponding graded sheaves

. T* *
hF.TF"SF

then h induces an isomorphism in local coefficients:

h*(X) : T*(X; F) = S*(X; F) .

4, QUASI-LINKED STACKS

We have given a definition of 'pl! cobordism with coefficients in
a sheaf' which works in the category of all sheaves, is functorial on this
category and extends the case of coefficients in an abelian group. Un-
fortunately, we can be sure that the definition enjoys good properties
(e. g. spectral sequence) only when some special types of sheaves are
involved, Let us try to describe the source of this difficulty, A mock
bundle and a stack, 7, over a simplicial complex K, have a main feature
in common: they are both 'local' objects in the sense that they are both
functors defined on the category K. A mock bundle takes its values in
the category of p! manifolds and inclusions in the boundary, while a
stack of abelian groups ranges in the category of abelian groups and
homomorphisms, Thus in order to have a notion of mock bundle with
T coefficients, which has good properties, what is needed is the following:

1, a notion of 7(0)-manifold (o0 € K) for which the corresponding
mock bundle theory is 'cobordism with 7(0)-coefficients’.

2, a recipe for associating a -r(o2 )-manifold to a T(Ol)—manifold
in a way which is functorial on K.

Therefore we see that the difficulties arising from our definition
can be traced to the lack of a bordism theory of G-cycles which is func-
torial (with respect to G) on the cycles, rather than only on the bordism
classes. Now in many instances it happens that conditions 1 and 2 can
be fulfilled and since some of the cases look rather interesting, we will
make a detailed discussion of them.,

Thus, in the remainder of the chapter, we abandon the point of view
of setting up a theory of local coefficients in generality, Instead we dis-
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cuss, along the lines of the above remarks, some generalisations of our
method and give examples to show how local coefficients may at times
reveal relationships between local and global properties of a space, We
continue to work only with pl cobordism, but everything that we say
remains true for an arbitrary geometric cohomology theory,

Let p, p' be linked resolutions and f : p = p' a chain map, f
is said to be quasi-linked if the following conditions are satisfied:

(a) For each bP € Bp, p=0, 1, 2, 3 either fb") =0 or
one of if(bp) is in B'P,

(b) For each link L(bp, p) let fL(bp, p) be obtained from
L(bp, p) by the following process, Let V C L(bp p) be a stratum
labelled by bj if f(b]) = 0, remove V from L bp p); if
(b]) eB'], relabel V by f(b]) if —f(b]) eB'], reverse the orientation
of V andthen label -V by -f(b). Then we require fL(bP, p)=0OL(6ftF
for one of 6 =+ ,

To each (p, n)-manifold M there is associated a (p', n)-manifold
f(M) constructed on strata in the same way as fL(bl, p). There is a
category @, whose objects are short linked resolutions and whose mor-
phisms are quasi-linked maps, A quasi-linked stack of resolutions
over a ball complex K is a covariant functor S = S :K=Q. If K is
oriented, an (S, q)-mock bundle 5q over K conS1sts of a projection
pE:EE-. |K| such that, for each 0 €K, pE (0) is the interior of an
(S(0), q + dim 0)-manifold (o), with 2E(0) = — [0;:018(0; < olp (@)

The cobordism theory of (S, q)-mock bulndles is developed exactly
in the same way as the theory of cobordism with coefficients in a linked
stack of resolutions (see §2). In particular we have

(a) an abelian group Qq(K, L; S), the q-th cobordism group of
K, L (L C K) with coefficients in S, depending only on S, |K|, |L|.

(b) a spectral sequence running
BP(k/, @))= o x, s)
where Qg is the stack of abelian groups over K defined by

Qg(o) = Qq(point, 5(0))
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and Qg(ol <o) [M] =[S0, < o )M],

As an illustration of the general setting described above, we dis-
cuss some examples associated with Poincaré duality,

Let (P, SP) be a Zn—manifold of dimension m (see I 1, 1(2)),
triangulated by (K, SK)(SK C K) and consider the stack £ = £L(K) of
local m-homology on K.

If n = 2, then a presentation of £ is the following:

(a) £(0) = free abelian g;oup, F(x a)’ on one element X,

(b) if o', ceK~-SK or o', 0 €SK and ¢' < 0o, then
£(0' < 0) is the isomorphism mapping X o to X

(¢) if o' €SK, 0 €e¢K - SK, o' < 0, then £(o' < 0) is one of the

isomorphisms x -EX depending on which 'sheet' o belongs to., We

call 'positive’ (re(;p 'negative')the sheet corresponding to the "+’ sign
(resp. '-' sign),

For a Za—manifold, £ can be presented as follows., If o € K- SK,
then £(0) = F(x ); if 0 €SK, then £(0) = F(xi’, 9
are so defined.

(a) if o', 0eK-SK or o', 0 €K and o' < o then £(o' < 0)

x2), The morphisms

is the canonical isomorphism;
(b) if o' €SK, and 0 €K - SK; o' < o, then £(o' < 0) is one

of the following isomorphisms, depending on which sheet o belongs to:

o' o' of
x1 - X x1 - X, x1 -0
(1) (2) (3)
o' o' o'
x2 - X, x2 -0 x2 - Xy

The sheet for which the assignment (i) holds (i =1, 2, 3) will be referred
to as 'sheet (i)',

Associated to £, there is the following quasi-linked stack, A, on
the Za—manifold K: if 0 €K - SK, then A(0) is F(x_r) >lgF(xo); if
o € SK, then A(0) is F(xf, xg) >}»F(xf, xg); Ao < 0) = L£(0' < o),
We write Qq(P, ﬁ) = lim Qq(K, A). Here £ stands for "local-homology
sheaf’,

With the above notations we have the following
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Proposition 4, 1. There is a duality isomorphism:

v: e, H-a . (P).

m+q

Proof, n = 2, In this case SP is an orientation-type singularity.
Let [£] € Qq(K, A), The total space E(&) is a manifold (see Chapter II),
Moreover E(&) is oriented, because it is oriented over both K - SK and
SK and the action of £ makes the orientations of the blocks over the
positive sheet compatible with those of the blocks over the negative sheet,
Therefore we regard E({) as an oriented bordism class and define a
'glueing map' Y like in Chapter fI. The proof that ¢ is an isomorphism
reduces essentially to the proof of Poincaré duality given in II and we omit
it.

n= 3, Again, for the sake of simplicity, we only discuss the
case n = 3. The general case is dealt with using the same arguments.
Let [£]C Qq(K, A). The block of £ over a simplex o' € SK is a pl

t L

manifold, each component of which is labelled by either xf or xg and
at most two non-empty blocks merge into it, so that no singularities are
created in the glueing process (see Fig. 18). Moreover, as in the above
case, the signs in the stack-homomorphisms ensure that the orientations
of the blocks are compatible in passing from one sheet to another across
SK. Hence the total space E(¢) is an oriented pl manifold and the
operation of 'glueing up and disregarding the labels’ gives the required
homomorphism .

We now prove that ¢ is an epimorphism. Let f: WmﬂLK be
a simplicial map representing an oriented bordism class of P. Then
Cohen's generalized transversality theorem (see IV 1. 1(2)), together with
the subdivision theorem, tells us that there exists a cell decomposition
(L, SL) of (P, SP) and f = f, such that

@ Tl YL - Int Lo) is the projection of a p! oriented g-mock
bundle, where L is a subcomplex of L triangulating a product neigh-
bourhood of SP in P, i.e, |L0 = SP X cone (3 pts). In order to avoid
technical details, we assume t'hat LO is the product cone-complex
SL X cone (3 pts) and write L; for L0 n Sheet (i) (i=1, 2, 3).
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Fig. 18

(b) f"(Lo) is an oriented manifold with boundary T~ 1(aLO)
and T|T Y
plex L = {o X cone (3 pts) : 0 € SL }. ’

Now we take boundary collars T—I(BL]) x1CT” (Lo) (=2, 3)

and 'stretch' them along the cone-lines of L until ¥ is replaced by a

Lo) is the projection of a q-mock bundle over the cone com-

1

map f': Wm+ |L| such that, with obv1ous meaning of the notations:
(@ f'~f modL - Int' L0 )
() £ NSL) =f—’1(aLJO) X1cC f—'l(aL]0 X1) (j=2, 3). (See
Fig. 19.)
Then, for o' € SL and ' '(0') # ¢, we label the block '~ (0")

by xi’ if the two non-empty blocks merging into it lie over the sheets
-1

-1

(o') by xg. For each
m+q - |L|

gives rise to a q-mock bundle associated to AL. This shows that

(1) and (2) respectively; otherwise we label f*

0 €L - SL we give f'"!(0) the label X Inthisway {': W
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Fig. 19

is an epimorpnism. The injectivity of  follows from the same argu-
ments appiied to P X 1.

The proof of the proposition is complete,

Another example of a polyhedron, whose local homology gives rise
to a quasi-linked stack in a natural way, is provided by any unoriented
pl manifold Mm. We leave the reader to make the obvious definition
of Qq(M, fi) in this case, while we establish the following fact about M,

which is an easy consequence of Proposition 4. 1.

Corollary 4, 2. Suppose that the orientation cover O(Mm) o M

the circle S' and f: M =S’ is a map. Then there is a duality iso-

morphism,

vl -0, o).

+q(
Proof, Weregard M as a Zz—manifold in the following way.

First we make f transverse to a point X, € S!, then take SM = f—l(xo)

and give orientations to M - SM and SM. The fact that SM is orientabl¢

follows immediately from the equation.
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(*) O(SM) + ¥(SM, M) = O(M) |sM,

where O(-) is the orientation cover of (-), ¥(SM, M) is the normal
cover of SM in M and + denotes sum of isomorphism classes of Zz—
bundles.

In particular, if f is null-homotopic, we can take SM = ¢ and
M becomes an oriented manifold,

Now Proposition 4.1 applies,
5. A FINAL EXTENSION AND EXAMPLES

Let G be the category defined as follows, The objects of @ are
linked resolutions; a map of resolutions f:p =+ p' (p, p' €@) isa
morphism of @ if f = nfo, where n is a positive integer and f0 is a
quasi-linked map. Clearly f0 and n are uniquely determined by f.

Let f be as above, then to each (p, n)-manifold M there is
associated a (p', n)-manifold f(M) defined by f(M) = disjoint union of
n copies of fo(M).

An G-system on a ball complex K is a covariant functor
S = SK K= Q4. Let ‘JKO be the class of S(o)-manifolds and
M = IMYK) = Uofﬂlo. If K is oriented then an (S, q)-mock bundle §q over
K consists of a function £ : K =9, such that, for each o € K, £(0) is

an (S(0), q+dim o)-manifold, labelled by o, with

@)= U [o: TI8(T, 0)&(7)
< 0o

where the obvious identifications are made in the union.

We note that an (S, gq)-mock bundle does not have a total space or
a projection. But nevertheless we can set up a theory of (S, q)-mock
bundles in analogy to the usual case: The various notions of isomorphism,

restriction, cobordism etc. for (S, q)-mock bundles are obtained by

obvious modification from the definitions for ordinary mock bundles. We
leave the reader to write down the details and to establish the existence
of:

(i) an abelian group Qq(K, L; S), the g-th cobordism group of
(K, L) with coefficients in S, which depends only on S and ILI - IKI
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(ii) a spectral sequence
H(|K]; ﬂg): Q*(K; S).

The sheaf of local homology, considered in §4 for a Zn—manifold,
provides examples of & systems for many classes of polyhedra. Here
we mention three:

i
Let by be any short linked resolution of Z. Then, for each o €K,

() X = homology n-manifold, i.e. H,(X, X-x;2) = H.S"; Z).

|K| =X, we set S(o)=pZ and S (0< T)=mo id:pz-'p where

by z
m : Z =+ 7 is the multiplication glven by the local homology stack. Using
the spectral sequence (ii) as in the proof of Theorem 2. 3, we are able to
conclude that Qq(K; Sp ) is independent of the presentation pz and

Z
therefore provides a good definition of cobordism with coefficients in the

sheaf of local n-homology of X.

(b) X = rational homology manifold. I e. Hi(X, X-x; Q) =
Hi(Sn; Q). In this case fix a linked resolution pQ for Q@ and define

Q9(K; s ) asin (a). Again Qq(K; S_ ) does not depend on the par-

ticular resolution.

(¢) X is a polyhedron with only two intrinsic strata. Again
there is a good definition of cobordism with coefficients in the sheaf of
local homology. We leave details to the reader.

Finally, we conjecture that, at least when there is a 'good’
definition of cobordism with coefficients in the sheaf of local homology,
there is a 'Zeeman spectral sequence’, cf. [1], relating bordism with
cobordism with local coefficients., Proposition 4.1 gives exactly this

for a Zn—manifold.
REFERENCES FOR CHAPTER VI

(1] E. C. Zeeman. Dihomology III. Proc. Cam. Phil. Soc., (3)
13 (1963), 155-83,
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VIl-The geometry of CW complexes

In this final chapter we draw together all the ideas of the previous
chapters by showing that an arbitrary cohomology theory is a geometric
"theory in an essentially unique way. Thus the geometric definitions of
coefficients, operations etc, all apply to an arbitrary theory. This is
achieved by examining the geometry of CW complexes, We will define
a new concept, that of a transverse CW complex, which has all the
geometric properties of ordinary cell complexes. In particular, it has a
dual complex and transversality constructions can be applied. The
transversality theorem (in §2) is a version for a CW complex of the
theorem in part II 84, However the proof uses even less and is ele-
mentary!

If X is a based transverse CW complex and X* its dual com-
plex, then the subcomplex x(X) C X*, consisting of dual objects other
than the object dual to the basepoint, behaves with X exactly like the
base of a Thom complex behaves with the whole complex., A map
f: M =X can be made transverse to x(X) (in fact the transversality
theorem does exactly that) and the transverse map is determined by its
values near f ' x(X). 1In this way, an arbitrary spectrum is seen to be
a 'Thom' spectrum for a suitable theory (with singularities), see §8§4
and 5.

Another consequence of this chapter is that CW complexes,
already useful as homotopy objects, now have a beautiful intrinsic geo-
metric structure. This has strong connections with stratified sets and
the later work of Thom, see §3, We intend to write a paper [5] examining
transverse CW complexes in greater detail and showing that they have
all the properties enjoyed by cell complexes and semisimplicial com-
plexes. In particular block bundles or mock bundles with base a trans-
verse CW complex can be defined and have good geometric properties

(see also §4 of this chapter),
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The main theorem in §6 is that the stable homotopy category is
equivalent to the category of geometric theories (theories of 'manifolds’
with singularities, labellings etc., see Chapter 1V) with 'resolutions’
formally inverted. Thus any theory has cycles unique up to resolution
of singularities, and any natural transformation of theories is equivalent
to a relabelling followed by a 'resolution’, see the examples in §6. Thus
a theory has products if and only if the product of two cycles in the theory
can be relabelled and then 'resolved’ to give a cycle in the theory, see
also the final remark of §6.

Throughout the chapter we will use the standard notation for CW

complexes. Thus X, Y etc, denote CW complexes, €, ez, el, e] etc.

denote cells; all cells have given characteristic maps denoted
h1 : D1 - X, h2 : Dj - X etc., where Dj = [-1, 1]j C Rj. We denote
h1(0) €e CX by él in analogy with the notation for the barycentre of
a simplex. Other notation is in §1.

We would like to acknowledge a helpful conversation with
C. T. C. Wall at the beginning of the work of this chapter.

1. BUILDINGS

In this section we describe a general structure which allows a
dual structure to be defined. The examples will be used in later sections.

Let Y be a space and {bi } apartition of Y into disjoint
subsets. Write bi < bj if i #j and bi C bj' Define the simplicial
complex sY to have for typical n-simplex a string

(b, <b <...<b )

1
0 1 n

and faces given by omitting members of the string, Write Bi for the

vertex (b,) of sY and Bi b. ... b. forthe simplex (b, < b, <...bi )
! ol n L L n
sY has the structure of a cone complex in the sense of McCrory [3];

in particular we can define
Cb) =ct{b b, ... b [b =b]

1 1 1 1 1
0 1 n n

and
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C*®.)=clib. b, ... b |b, =b }
1 1 1 1 1 1
0 1 n 0

n addition to the usual
st(b,, sY) =cl {b. b, ... b, |b.=b  some il
i i i i,
01 n j

lThen if we write

here is a canonical homeomorphism

st(b,) = C(by) X C*(b,) .

Aplanfor Y isamap d: Y= sY such that d—l(é(f)i)) =b, and
hen {Y, {bi }, d} is a building with bricks lbi} andplan d. We

hen have a new partition

1

dY (the derived of Y) = {d~(0), 0 € sY}

ind the dual building
Y+ =1{y, b7}, d} where by =d'1(é*(5i)).
Notation. We write ﬁi for d—l(l;i).

Examples 1.1, 1. Let K be a simplicial complex and sK = dK
1e usual first derived of K. Then {K, {&}, id. } is a building with
ricks the open simplexes and plan the identity. Our notation is then

onsistent with the usual notation for barycentres and first deriveds.

2. Suppose Y is a CW complex in which the closure of each
ell is a subcomplex, Let lei } be the open cells of Y (which partition
) then 1Y, lei }, d} is a building, where d is defined by inductive
onical extension. Then éi is the centre of € and the notation is con-

istent.
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3. Suppose p : E =+ K is a mock bundle, over a simplicial
complex or a cone complex, in which each block has a collar and the
projection is defined by mapping collar lines radially (the 'canonical
projection')., Then {E, {open blocks}, p} is a building where
sE C dK (the usual first derived). Note that if bi is an open block of
E then bi =cl (bi - collar),

4, Suppose X is a stratified polyhedron in the sense of Stone
[e]. Le. X is partitioned by open manifolds, the strata, and provided
with a system of regular neighbourhoods. There is also a local triviality
condition which does not concern us. Then X defines a building with
the strata for bricks in which the plan is obtained by using the mapping
cylinder structure of a regular neighbourhood. Then Bi =cl (bi - neigh-

bourhood of previous strata), the closed stratum.
2. TRANSVERSALITY

Transversality for CW complexes works nicely with either the
smooth or pl categories. In this section we choose to work with the pl
category but a similar treatment is possible with the smooth category.

Let M be a closed pl manifold and X a CW complex. A may
f: M =X is transverse if for each cell e € X either f_l(ei) =¢ or

there is 2 commuting diagram

where Ti =f!

(ei), hi is the characteristic map for e, t, is the pro-
jection of a pl bundle (necessarily trivial) and cl (Ti) has codimension
zero in M, Notice that this implies that Ti = ti_l(O) is a submanifold
of M of codimension i, }{otice also that if X = X0 U € then
M= M0 u Ti X Di’ uihere Ti X D,1 has the form of a 'generalised handle'
attached to M0 by Ti X 8Di.

In the cage that oM # ¢, we insist that cl(T.l) meets oM ina

subtube T' X Di where T'C B’}‘i has codimension 0. Thus f|dM is
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ilso transverse.
We say that the CW complex X is transverse, or that X is a
ICW complex, if each attaching map is transverse to the skeleton to

vhich it is mapped.

Transversality theorem 2.1. Suppose X isa TCW complex

ind f: M=X a map, where M is a compact p/ manifold. Suppose

| @M is transverse, Then there is a homotopy of f rel @M to a

ransverse map.

Corollary 2.2. Any CW complex gives rise toa TCW complex

if the same homotopy type obtained by inductively homotoping attaching

naps to make them transverse.

Proof of the transversality theorem. Since im(f) is contained
n a finite subcomplex of X, we can assume X is finite and proceed by
nduction on the number of cells of X. Suppose X = X0 U €,

Choose a collar ¢ for dM in M and by a preliminary homotopy
‘el dM assume that f is constant on collar lines. Now apply the
tandard transversality theorem (see Remark 2. 3 below) to make f
ransverse to él, in €5 by a homotopy of f rel im(e). We now have a

liagram

T ——— D,(E)

there Di(e) is a small disc in Di centredon 0 and t is a trivial bundle.
foreover f|im(c) is already transverse to the whole of e, Hence, by
omposing f|cl (M - im(c)) with a standard homotopy of Ei in itself
obtained by expanding Di(e) onto Di and using hi) and then extending,
y using the collar in the usual way, to a homotopy of f which keeps
M fixed, we have the same diagram with D, replacing Di(e).

Now write 8T =T X o, (T =t"1(0) as usual), M, =clM-T),
[1 =¢l(¢dM - T). Then M0 is a compact manifold with boundary
[1 U 0T. Now from definitions and the diagram both f|M1 and f|6T
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are transverse to X0 (and to X). Thus f BMO is transverse to X0
and by induction we may homotope f further rel BM0 to make it trans-

verse, as required.

Remark 2. 3. We only used the simplest pl transversality
theorem, which has an elementary proof using the fact that the preimage
of the barycentre of a top dimensional simplex by a simplicial map is
framed - a fact that has been known for about forty years! The corres-
ponding smooth theorem is also elementary, using Sard's theorem.

Now let M, =M U oM X1, i.e, M with a collar glued on
M X0
'on the outside’, and let q : M+ - M be the map which projects the

collar back onto dM, If f: M =X is a map, then define f+ : M+ - X
tobe foq. Wesay f: M =X is weakly transverse if f+ is trans-

verse. Thus f| éM is transverse but some of the tubes Ti might only
have codimension 0 in dM. An example of a weakly transverse map is
a characterisiic map for a cell ina TCW complex. In fact it can easily
be seen that X is a TCW complex if and only if all the characteristic
maps are weakly transverse.

Amap f:X =Y between TCW complexes is transverse if
fo hi : Di =Y is weakly transverse for each characteristic map hi of
X.

Theorem 2. 4. There is a category TCW consisting of TCW

complexes and transverse maps. The inclusion TCW © CW  induces

an equivalence of homotopy categories. TCW is closed under cross

product, wedge product, factorisation of a subcomplex and smash product

In particular it is closed under suspension (smash product with Sl).

Proof. That TCW is a category follows from 2, 5 below and
definitions. That TCW C CW induces an equivalence of homotopy
categories follows from 2. 2 and 2. 6 below. The rest is a matter of

trivial verification,

Lemma 2.5, f:M—=X, g:X—=Y are both transverse maps

where M is a compact p! manifold and X, Y are TCW complexes.

Then geof:M=Y is transverse.
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Corollary 2. 6. Any map between TCW complexes is homotopic

to a transverse map. The homotopy can be chosen to keep fixed a sub-

complex on which the map is already transverse,

Proof. Use the transversality theorem inductively to shift cells
to make the map transverse. The lemma and induction ensure that a cell
is already transverse on its boundary,

The proof of Lemma 2. 5 uses the description of M as a framified
set which is given in the next section and will thus be left for convenience

until the end of that section.

3. FRAMIFIED SETS

Roughly speaking, a framified set is a stratified set in the sense
of Stone [6] in which all the block bundles are trivialised, The precise
definition is similar to the definition of killing in Chapter IV, and in fact
a precise connection will be formulated in §4. The definition is by in-

duction on the length of filtration.

Definition 3,1. A framified set X of length n consists of
(1) A polyhedron X with a filtration

= D D D =
{x X 92X, 2. X 22X g}

such that X, - X, i+1 is a manifold for i=1, 2, ..., n.
(2

i
A regular neighbourhood system for the filtration, Ni i
n,

’

1=j= (see Remark 3, 2 below).

i
(3) For each i=n a framified set L, of length i- 1,
(4) For each i =n an isomorphism of filtered sets

h,: {N, DN, ,D... N, .} N, .x C,
i i,1 i, 2 i, i i,i ~i

where C, {C(Ii 1) o... C(L i 1) D pt. } is the cone on L. with
the cone pomt added as the final sta,ge of the filtration,

The cone flag 91 is a fibre or model for the framified set X,
and the framified set l’i is a link for X, There are obvious notions of

restriction of a framified set to a suitable subpolyhedron and of product

137



of a framified set with a manifold. A p! homeomorphism is an iso-
morphism of framified sets if it commutes with all the extra structure.
In particular two isomorphic framified sets have the same (or identi-
fiable) system of links. The final condition is:

{5) hi restricts to an isomorphism of framified sets

i

. . 5 . y
N 12N 2 N PN X D
Remark 3.2, A regular neighbourhood system is constructed
inductively by defining Nrl n= Xrl and Nrl § is a simultaneous system
’
of second derived neighbourhoods of Xrl in’ X],. Then define

Xi =X - int(Nrl i) and proceed with the construction for
rOX' D ODX' . D
X!2X!D...2X D4

Existence and uniqueness of regular neighbourhood systems thus follows
from the usual regular neighbourhood theorem,

Notice that a framified set is a building with bricks the strata
X - %

Example 4), We are not interested in the specific ordering of the strata

} and plan defined by using the cone structures (see §1

of X but only in the partial ordering given by the geometric structure
of X, and we will allow an isomorphism of framified sets to change the
order, The importance of framified sets lies in the following theorem,

which is essentially an observation.

Theorem 3, 3. Let f: M = X be a transverse map toa TCW,

then M has the structure of a framified set determined up to isomorphisn

by the map f.

Proof. Since the image of f is contained in a finite subcomplex
of X we can assume without loss that X is finite and proceed by in-
duction on the number of cells of X. In fact we will produce a framifica-
tion of the same length as the number of cells. Let X = X0 U e. Define
M, =f'(8) and N, )= clt™(e)) (Le. M,=T and N, ;=T inthe
notation of the previous section), Now let M = c¢l(M - T) then M

and 0T =T x5,

i-1 have the structure of framified sets by induction.

138



Moreover, by uniqueness we can choose the structure on 8T to be the
product of the framification of Sj-l with T. Choose the indexing to
agree and extend the strata to M by adjoining the 'cones' on their

intersection with 6T, L e,

Mi = (Mo)i uT X (C(Sj_l)i - cone pt. ).

Finally the isomorphism ht is provided by the chosen product structure
on T. Induction now gives all the structure of a framified set to M.

Uniqueness is clear.

Fig, 20

We can also describe this framification (at least as a building)

quickly as follows, Take the dual complex to X and let

X=X*DX*D,,, DX¥=28&
1 2 t
be the corresponding filtration of X, Then Mt = f-l(XE‘). In other words
the building is the pull-back by f of the dual building to X.
Notice that the "'models’ 91 are just the closures of the cone

flags

139



e 1 (X*DX*2 ... X¥).
i 1 ) i

Since the models depend only on X, we say that the framification of M
is modellec on X, It is clear that thereisa 1- 1 correspondence
between transverse maps f: M —= X and framifications of M modelled
on X, This observation will be developed in the next section when we
'classify' homotopy classes of maps from one TCW to another. To end
this section we will prove the lemma left at the end of the last section.
First observe that, by inductively choosing collars on the frontiers
of the N . we can {ind an ibomorphic system with smaller closed strata
for the framification given by a transverse map f: M =+ X, of replacing
the neighbourhoods ’i‘i X Dy by neighbourhoods of the form ’i‘{ X D:_

where ’i‘i @ ’i‘i and D;" 2= Di U collar, and it is not hard to see that we

~

o
can choose ail the collars so that there are diagrams

proj. - D+

T x D
1 1 1

+
f hi

X

We call this framification an extension of the original one.

Proof of Lemma 2,5, Let e be a cell in Y and Tkz(go f)—lek.
We have to show that cl(T ) is a product Tk X Dk of codimension zero
in M which meets oM in a similar subproduct. Choose an extended
framification for f : M = X. This means that we can regard M as

made of generalised handles of the form ’i‘i X D:_. Since g°f| :D:_-’Y
is transverse (from the definition of transversality for TCW's) we have
Di =Q X D say where Q is a manifold with boundary and

QXD meets aD ina similar Subtube Here we are regarding Di+

k
as included in M as pt. X D - T‘ X D Thus

. T N
v X i = '
(Ti D) fT; =(Q X Ti) X Dy

=Q"' X D, say.

k
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But all the product structures are coherent in the Dk factor and the

required product structure on Ti is seen.
4, MANIFOLDS AND MOCK BUNDLES MODELLED ON X

We now rephrase the results of §3 by omitting the first stratum
throughout. The idea is to obtain a formulation which is invariant under
suspension and thus carries over to stable maps.

Let X be a based TCW. Let * € X be the basepoint (regarded
as the first cell in X) and let x(X) be the subcomplex of X* consisting
of the duals to cells other than *. If f : M = X is transverse then the
associated stratification of M starts M D x(M, f) where x(M, f) =
1 (x(X)). Let € be a typical cell of X. Collapse the notation of §3
and write Ci =cl(x(X)n ei), then Ci is the cone éiLi’ where Li is
the link associated to €. and we label the cone point by € L.1 is in
fact a framified set embedded in Si = BD.I. The set of basic links {I...1 }
defines a theory of manifolds with singularities (see IV §3) called free
X manifolds. Using the fact that Li = Si’ we have an intuitive notion
of a framed X manifold. The precise formulation is in terms of
killing as in IV §4. Suppose X is finite and X = X0 U € Suppose
inductively that framed X0 manifolds have been defined so that Li is
a framed X0 manifold. The theory of framed X manifolds is the theory
obtained from this theory by killing L.1 and labelling the new stratum of
singularities by ei. In general define a framed X manifold to be a
framed X' manifold where X' C X is a finite subcomplex, From the
definitions of killing and framified sets, it is easy to see that a frami-
fication of M modelled on X is equivalent to a framed X manifold
embedded in M. From Theorem 3. 3 and the transversality theorem we

have:

Proposition 4,1. Thereisa 1 -1 correspondence between the

set of homotopy classes of maps [M, X] and the set of cobordism classes

of framed X manifolds embedded in M. In particular nn(X) = Q;( where

9.;1( means the group of cobordism classes of framed X manifolds em-

bedded in S™.
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We can extend the proposition to maps [Y, X] where Y is an
unbased TCW wusing an extension of mock bundles to TCW's. Let Y
be a TCW then a subset E C Y is the total space of an embedded mock
bundle (of dimension -q) provided that for each cell e € Y thereis a

diagram

M. < D.

i i

h, )\ /h.

i’y i
Y

where Mi = hi'l(E) and is a proper submanifold of Di of codimension
q. The following proposition is a generalisation of Lemma 1. 2 of Chapter
II and is proved by a similar argument to Lemma 2. 5. We omit the

details.

Proposition 4.2, Let E C Y be an embedded mock bundle and

f:M—=Y atrangverse map, then f_l(E) is a proper submanifold of M

of codimension q.

The proposition implies that mock bundles can be pulled back
and hence give a contravariant functor on TC=W

There is an obvious extension of the notion of mock bundle to mock
bundle with singularities and framed mock bundle. The next proposition

is, like 4.1, essentially an observation:

Proposition 4,3, There is a 1 -1 correspondence between

transverse maps Y =X and framed X mock bundles embedded in Y,
Hence [Y, X] = QX(Y), where QX(Y) denotes cobordism classes of
framed X mock bundles in Y.

There is a based version of 4. 3; [Y, X], = QX(Y) where ~QX(Y)

denotes cobordism classes of framed X mock bundles in Y - *,

We will now stabilise these results. Let SX denote the (reduced)
suspension of X which is againa TCW then X(SX) = x(X) and if
f:5"+X is transverse then so is Sf : SrH_1 = SX. Moreover
x(Sn+1, Sf) = x(Sn, f) and the only difference between the framification
of Sn+1 given by S{ and that of s" by f is that all the bundles are

142



enlarged by adding a trivial 1-disc bundle, We thus have the stable
version of 4.1 and 4. 3 (for details of the stable category see Adams [1]):

Proposition 4.4, Thereisa 1 -1 correspondence between stable

homotopy classes of (based) maps s" = X and cobordism classes of

stably framed X manifolds. There isa 1 - 1 correspondence between

stable homotopy classes of stable maps {Y, X! andframed X mock

pundles over Y - * (i.e. embedded in S Y - *).

Remarks. 1. The above notion of a mock bundle over Y is a

direct generalisation of the definition for cell complexes in Chapter IL

2. We have been deliberately careless (or rather uninformative)

about dimensions; this will be remedied in the next section.

3. See Example 2 at the end of the next section for a clarifica-

tion of the relation between this representation and 'killing’'.
5. THE CYCLES OF A HOMOLOGY THEORY

At the end of the last section we had represented a cohomology
theory, which came from the suspension of a CW complex, as a mock
bundle theory. In this section we extend this result to arbitrary spectra
and observe that the corresponding homology theory is the corresponding
bordism theory. The results are most elegant for connected spectra
when we will be able to represent hn( ) by n-manifolds with singularities,
For non-connected spectra we will need manifolds of non-constant dimen-
sion, Uniqueness of representatives will be discussed in §6.

We follow Adams' treatment of the stable category, [1].

A spectrum X is a sequence {Xi' q, i= 0} of based CW com-
plexes and based maps where q,: SXi - Xi+1 is an isomorphism onto a
subcomplex. It is connected if X.1 has no cells other than * in dimen-
sions < i.

Suppose X is connected and, for some i> 0, Xi =% Uei1 ve,U...
Make Xi intoa TCW and, by further homoto_pies, ensure that each
cell €, €,... wraps non-trivially around el1 (geometrically, not

homotopically!). Then x(Xi) = él U... will have constant codimension

143



i in ‘Xi. Now SXi is again transverse and since SX.1 c Xi+1 we can
make Xi+1 transverse keeping SXi fixed and, by further homotopies,
ensure that each cell in Xi+1 - SXi wraps non-trivially around Sel.
Thus X(Xi+1) again has constant codimension (this time i + 1), Pro-
ceeding in this way we can make each X, transverse, for j =i, with
SX]. = Xj 1
Now define the geometric homology theory associated to X by
taking for basic links all the links defined by Xj for j = i, with the
obvious identifications given by the inclusions SXj = X]. +1° Each link
is stably framed and it makes sense to talk of stably framed X manifolds

and x(X].) of constant codimension j.

and from the results of §4, Chapters II and IV and definitions we have:

Theorem 5.1, The homology and cohomology theories defined

by the spectrum X are equivalent to the bordism and mock bundle

theories based on stably framed X manifolds. Moreover by choosing

X(X.) to have constant codimension j we have ensured that hn( 5 X)

is represented by X manifolds of (genuine) dimension n and that

hq( ; X) is represented by mock bundles of fibre dimension q.

Remark 5.2, The first half of the theorem is true for non-
connected spectra by the same proof but since x(Xj) will in general
have varying codimension in X,, the cycles will be of mixed dimension,

possibly of unbounded dimension. See the examples below.

Examples 5, 3, 1. X]. =g, x(X].) = pt. and an X manifold
is just a framed manifold. Thus we have the usual representation for

stable (co}homotopy.

2. For some j, Xj =gl U p* where f: s¥lagl isa given
map and
i,
Xi =8, i< j,
)
Xl+j =S X]. .
Then

L1 =g, C1 = pt. (of codim j),
L, = mk-i-1, C, =C(M)
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where M is the framed submanifold corresponding to f. X manifolds
have two strata both framed and the neighbourhood of the smaller stratum
in the larger stratum is a product with C(M).

In other words X theory is framed bordism with M ‘killed’,
see Chapter IV §4. This example is the germ of the whole construction.
Each new cell attached determines a manifold in the previous theory,

which, when killed, gives the new theory.

3. The case f =~ * of the example 2 is also worth discussing
in detail. If f=7% ie X, = sl v &, then the theory is a 'mixed
dimension' theory, i.e. an 'n-cycle' is the union of a framed n-manifold
with a framed (n+j-k)-manifold, If f # * then M is a framed manifold
bordant to ¢. Thus X theory is not a mixed dimension theory but it has
a resolvable singularity: there is an elementary resolution connecting

the two theories, see Example 6. 4(4).

4. X = Thom spectrum 1\’/_12} or MO etc. MPLrl has a cell
structure in which each cell is of the form (cell of BPLn) x I, Then if
BPLrl isa TCW, sois MPLrl and x(MPL)rl = BPLn. Thus x(M, f)
is just a submanifold of M of codimension n and we recover the usual
representation of bordism. Similarly with M\Q we get submanifolds
with normal vector bundles, i.e. smooth(able) submanifolds. In this
example the singularities are 'virtual', they are of the form C(framed
sphere) and serve to allow the normal bundle of x(M, f) to be non-
trivial,

5. X = Moore spectrum. E.g. for Zn, i = Sj Url Dj+1.
Then L1 =4, L2 = n points and we get framed Zrl manifolds, In
general the geometric description fits with that given in Chapters III

and IV (for stable homotopy, but see also Example 8 below).

6. If X and Y are TCW spectra thensois XV Y and an
X ¥ Y manifold is merely the union of an X manifold with a Y mani-
fold, Take care about dimensions, see Example 3 above,

7. If X and Y are TCW spectra then so is a naive smash

product X ~ Y, see [1;p. 161], and a cell of X ~ Y is the product of one

of X with one of Y and has for link the join of the corresponding links
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for X and Y. Thus an X ~ Y manifold is a manifold with singularities

being joins of X singularities and Y singularities,

8. Combine Examples 4, 5 and 7. Then bordism with co-

efficients has exactly the description given in part III!
6. RESOLUTION OF SINGULARITIES AND THE MAIN THEOREM

Let T be a geometric homology theory and suppose that in T
there are two singularities of the form

1 cm

(2) c(ecm) U

Suppose also that C(M) does not appear in any other basic link.
Then a T-manifold can be resolved so as to delete both of these two singu-
larities. This is done by resolving all the C(M) type singularity using
(2) which is essentially a bordism in T of C(M) to a T-manifold with
no C(M) singularity. The method is similar to the proof of exactness
in IV Proposition 4. 1. Once there are no C(M) singularities, then

there can be none of the second type either., The precise description of

W) where W is a bordism (in T) of M to g.

this resolution process is contained in the CW interpretation which
follows. Let T' be the theory in which these two singularities do not

appear then we say that T' is an elementary resolution of T, A

simultaneous family of elementary resolutions will also be called an
elementary resolution. A resolution is a countable sequence of elementary
resolutions.

Now suppose that X and X' are TCW's and T and T' above
are the corresponding theories. Then X'C X and X differs from X'
by the addition of two cells e" and en+1

on e" and e" otherwise free. In other words X' differs from X by

with erH_1 attached by degree 1

an elementary collapse., Thus the geometric analogue of collapsing is

resolution and the process of resolution of a given T-manifold described
at the beginning of the section is just transversely deforming the map
st »x (which defines the manifold) into X', using the deformation re-

traction X = X'. The inclusion X' < X is an elementary expansion,

An expansion is a countable sequence of (simultaneous families of) ele-

mentary expansions.
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The following theorem is proved by an argument similar to that
contained in Chapter I (in fact rather simpler). * Its proof will therefore

be omitted.

Theorem 6,1, Let CW and SCW denote the categories of CW

complexes and isomorphisms onto subcomplexes and CW spectra and

isomorphisms onto subspectra respectively. Let ) denote the expansion

in CW or SCW. Then there are isomorphisms

=
o}
<

= cw@™h
~ sow (37!

=
|2]
9}
<

ll
ll

Combining with 2. 4 we have:

Corollary 6. 2. There are equivalences of categories

n
|

=2

wn =
QO
< |\S
|

wn |3
£ S
[/ |
\_/’Lv

Now let § denote the category whose objects are geometric
theories and whose morphisms are inclusions of theories or 'relabellings’'.
We now regard all theories as theories of framed manifolds with singu-
larities, non-framed manifolds being dealt with as in Example 5. 3(4), by
allowing singularities corresponding to the twisting of the normal bundle.
A theory T is included in a theory T' if the links of T' include those
of T up to a relabelling. Let R denote the resolutions in §. From the

discussion at the beginning of this section and 5.1 we have an isomorphism

Combining this with 6. 2 we have:

Main theorem 6. 3, There is an equivalence of categories

S(R) ~ hSC

<

* There are similar set theoretic problems to those encountered in

Chapter I §4, These can be dealt with in a similar way.
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In other words the stable homotopy category is equivalent to the category

of geometric theories with resolutions formally inverted. The operations

v and ~ in hSCW are described geometrically as 'union' and ‘join’

of singularities, see 5. 3(6) and (7).

Remarks and corollaries 6, 4. 1, There is an unstable version,
using 'embedded’ geometric theories (corresponding to the embedded
mock theories of §4). We obtain an equivalence EG(R) = hCW.

2, Theorem 6. 3 gives the answer to the problem of uniqueness
of geometric representatives for a given homology theory. Two geometric
theories give equivalent homology theories if and only if they differ by a
sequence of resolutions and their inverses.

3. The theorem also describes the stable maps geometrically
(i. e. natural transformations of theories, operations etc.). Such a map
always has the form inclusion (relabelling) followed by resolution. This
follows from an analogue of Lemma 2. 1 of Chapter 1. See also the next

two examples,

4, The example described in 5. 3(3) fits into the setting of this
section as follows. Let X' = Sj UH (Dk X I) where H is the homotopy
of f to *. Make X' transverse relative to the two 'ends’'. Then X'
defines a geometric theory of which both the theories described in 5. 3(3)
are elementary resolutions. The new singularity in X' is
c(cm) Uy WU pt. ) and can be used to resolve either the lower dimensional
piece into a singularity of the higher dimensional piece, or conversely.
This example makes it clear how resolutions can change the appearance

(and dimension) of a manifold drastically.

5. If we now consider the map
Sj Uf Dk - Sk

given by collapsing s toa point, then the geometric description of this
map is 'restrict to the singularity’'. This is seen by including Sj Ug Dk
in pit! U p* which collapses to s and using an argument like

Example 4. This example makes it clear that 'restriction to a singularity'
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is an operation and in fact many classical operations have this form,
(cf. McCrory [4]).

6. Finally a theory with products is one in which there is a
map X ~ X =X with suitable properties. By expanding X by a sequence
of mapping cylinders we can replace this by an equivalent inclusion
X'~ X' X'. Now if §n =X, §m — X' represents two manifolds in
the theory then §n ~ §m —+X' ~ X' represents their geometric prod-
uct (see 5. 3 Example 7). Thus a theory has products if and only if it
is possible to find a geometric representation in which the product of two
cycles is again a cycle (after possibly relabelling). Thus the classical
examples of ring theories (bordism etc. ) are essentially the general
example! Note, however, the case of R-bordism, see Chapter III, in
which the ring structure appears naturally via a resolution of singulari-

ties.
REFERENCES FOR CHAPTER VII

[1] J. F. Adams. Stable homotopy and generalised homology.
Chicago U.P. (1974).
(2] P. Gabriel and M. Zisman. Homotopy theory and the calculus of

fractions. Springer-Verlag, Berlin (1967).

[3] C. McCrory. Cone complexes and duality, (to appear).

(4] C. McCrory. Geometric homology operations, (to appear).

(5] C. P. Rourke and B. J. Sanderson. CW complexes as geometric
objects, (to appear).

(6] D. A. Stone. Stratified polyhedra. Springer-Verlag lecture notes
No. 252.

149



